(In-)secure messaging with SCIMP and OMEMO

Sebastian Verschoor!

University of Waterloo / Eindhoven University of Technology

ShmooCon 2017
January 15th

§ TU/e

UNIVERSITY OF

WATE RLOO

!joint work with Tanja Lange

Outline

Secure Messaging protocols
History of online secure messaging
My involvement

Formal verification
ProVerif

SCIMP
Version 1
Proverif results for SCIMP v1
Version 2
Proverif results for SCIMP v2

OMEMO
Signal
XMPP

Conclusions

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO

UNIVERSITY OF

%) WATERLOO

ShmooCon 2017

2/33

Secure Messaging protocols %) WATERLOO

TO THE TECHNOLOGY COMMUNITY:

Your threat model just changed.

Incoming President Donald Trump made campaign promises that, if carried out, threaten
the free web and the rights of millions of people. He has praised attempts to undermine
digital security, supported mass surveillance, and threatened net neutrality. He promised to
identify and deport millions of your friends and neighbors, track people based on their
religious beliefs, and suppress freedom of the press.

And he wants to use your servers to do it.

EFF ad in Wired magazine (source)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 3/33

https://www.eff.org/pages/eff-ad-wired

History of online secure messaging (1/2) 4 WATERLOO

1991: Phil Zimmermann creates PGP
2004: Nikita Borisov, lan Goldberg and Eric Brewer create
OTR
Secure, but requires synchronous environment
2011: Gary Belvin introduces SecureSMS (master's thesis)

2012: SCIMP (Silent Circle instant messaging protocol)
By Vinnie Moscaritolo, Gary Belvin and Phil Zimmermann
SecureSMS for XMPP
Even copies variable names and equation numbering from
Belvin's thesis (despite creating internal inconsistencies)
February 2014: Open Whisper Systems releases TextSecure v2
Allows offline initial user message
Later renamed to Signal

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 4/33

History of online secure messaging (2/2) 4 WATERLOO

May 2014: SC updates to SCIMP v2
Allows offline initial user message
August 2015: SC releases code for SCIMP v2
Adds more inconsistencies between code and documentation
September 2015: SC discontinues SCIMP, switches to Signal
based protocol
October 2015: Andreas Straub proposes OMEMO
Multi-device Signal for XMPP
Oct-Nov 2016: Trevor Perrin and Moxie Marlinspike release
official specification for the Signal protocol
Dec 7th 2016: OMEMO gets standardized by the XMPP
Standard Foundation: XEP-0384 (experimental)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 5/33

My involvement %Y WATERLOO

December 2015: My Master's thesis (at TU/e) on SCIMP
SCIMP v1 is formally verified by ProVerif to be secure
SCIMP v2 contains cryptographic flaws
the implementation contains many security bugs

June 2016: My cryptographic report on OMEMO
Minor bug found in multidevice setting

Developer patches it the same day as reported

July 2016: Tanja Lange and | release SCIMP preprint paper
Some of Silent Circle's code (copied from SCIMP
implementation) still contains bugs that were reported in my
thesis

Bugs got patched a few days later
Initial bug report: September 2015

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 6/33

Formal verification %Y WATERLOO

Create a mathematical model of a program

Ask the computer to prove several theorems about the
program. For example:

correctness

confidentiality of data/keys

authenticity of messages

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 7/33

Formal verification %Y WATERLOO

A successful formal verification is not a guarantee that the
implementation is secure:
The model might not accurately describe the implementation

Model often needs to be a simplification of the code
Code evolves

The attacker model might not be strong enough

For example, the attacker might implement a side-channel
attack

The context in which the model is deployed might break
model assumptions

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 8/33

Formal verification %Y WATERLOO

So why do we still go through the trouble?
Unsuccesful formal verification reveals bugs!
Building the model itself exposes many bugs and omissions

The model exposes assumptions that would remain implicit in
specs/code

Successful verification adds trust in protocol by eliminating
possibility of a large class of vulnerabilities

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 9/33

ProVerif % WATERLGO

Formal language for modelling interactive protocols
Requires a model for attacker capabilities

ProVerif uses Dolev-Yao: attacker has full control over the
network

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 10/33

ProVerif % WATERLGO

Formal language for modelling interactive protocols
Requires a model for attacker capabilities

ProVerif uses Dolev-Yao: attacker has full control over the
network

Limited computing power: have to break up the protocol in
pieces

We have to manually prove that their composition is still secure
No memory model

But there are some tricks to model key erasure/future secrecy
Requires manual “proof” that sequential composition is still
secure

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 10/33

ProVerif % WATERLGO

ProVerif has limited available primitives

We can define the required primitives using standard “tricks”
For example, to create an authenticated channel:

Create a private channel (confidential and authentic)

Create a process that runs in parallel with the main process.
Publish everything that is communicated on this channel in a
public channel

Pro: we can model the protocol very accurately
Con: requires expertise to implement the correct primitive

Con: the added complexity makes it very computationally
intensive to prove security

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 11/33

ProVerif example %) WATERLOO

(:l::i-::l: Main :+::+::+:)

process
(#* Allow arbitrary many protocol runs #)
|
(* Let the adversary decide who will engage in key negotation *)
in(ch, (init:identity, resp:identity));
(* Create a new phone channel *)
new phone : channel;
(* Allow eavesdropping on the phone channel #*)
(' ini{phone, x:bitstring); cutich, =)} |

1f 1mit = Compromsed then (
outlch, phonel;
processResponder(init, resp, phone)

) else 1f resp = Compromised then (
outlch, phonel;
processInitiator({init, resp, phone)

) else (
processInitiator(init, resp, phone) |
processResponder(init, resp, phone)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 12/33

ProVerif for SCIMP %Y WATERLOO

Security properties we expect of SCIMP and how to prove them
with ProVerif:

confidentiality: can an adversary can learn private
keys/messages?

authenticity /integrity: can an adversary trigger the
“user-accepts” event?

forward secrecy: leak an updated key, then check
confidentiality of old messages/keys

future secrecy: publish all key material, then run a key
negotiation over a private channel and check confidentiality
deniability: run the protocol with the honest user and with
the adversary, then check if the transcripts are
indistinguishable

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 13/33

SCIMP v1: Key negotiation % WATERLGO

Alice Bob

hash(pk,)

pkb
pka, mac,

macp
- — —| DH(skp, pka)

< Keys derived from DH >

Out of band)

genKeyPair() |- - -

- - —| genKeyPair()

DH(ska, pkp) |- - -

< Authenticated >

SAS: short authentication string
S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 14 /33

SCIMP v1: Key negotiation % WATERLGO

ECDHE gives shared secret Z, from which are derived:
Ksnd 05 Krev,0, Isnd,0, ircv,0; fOr message encryption and
authentication
mac,, macp; to confirm knowledge of Z
SAS; for authentication of identity
cs; for rekeying

User messages can be sent after four key exchange messages

SAS confirms identity all previous communication
Requires commitment to pk, to prevent collision attack

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 15/33

% WATERLGO

SCIMP v1: Rekeying

Alice Bob
[Alice]

< Alice and Bob share cs >

hash(pks,), MACcs(pks)
Pkb, MACcs(pkb)

pka, mac,

Verify MACg |- - - <

- ——| Verify MAC

mac

<

< Keys derived from DH and cs >
| |

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 16 /33

SCIMP v1: Rekeying % WATERLGO

First: store old decryption key (messages might arrive out of
order)

Optional: SAS comparison only after several rekeyings
Rekeying ensures future secrecy
It is not specified when to rekey

Protocol aborts on error

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 17 /33

SCIMP v1: Sending user messages % WATERLOO

Encrypt
ciphertext = AESy, (ij,plaintext)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 18/33

SCIMP v1: Sending user messages % WATERLOO

Encrypt

ciphertext = AESy, (ij,plaintext)
Update keys (ratchet)

ki+1 = MACy, (i)

1 =10 +1

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 18/33

SCIMP v1: Sending user messages % WATERLOO

Encrypt

ciphertext = AESy, (ij,plaintext)
Update keys (ratchet)

ki+1 = MACy, (i)

1=+ 1
Send message:

ij

ciphertext

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 18/33

SCIMP v1: Sending user messages % WATERLOO

Encrypt

ciphertext = AESy, (ij,plaintext)
Update keys (ratchet)

ki+1 = MACy, (i)

1=+ 1
Send message:

ij

ciphertext

No message signatures: deniable
Ratchet enables key erasure, but:

Out of order messages require you to store old keys
Old keys compromise future keys

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017

18/33

Proverif results for SCIMP v1 % WATERLOO

First key negotiation (if SAS confirmed over authenticated
channel)

v Confidentiality of keys

v Authenticity of keys and other party identity
Rekeying

V' Confidentiality of keys

v Authenticity of keys and other party identity
Future secrecy

v" When attacker misses first rekeying after compromise
v" When users reconfirm the SAS
Sending user message
v' Confidentiality of keys
v’ Strong secrecy of messages
v Authenticity of messages and keys

V' Forward secrecy (if keys can be erased)
v Deniability

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 19/33

SCIMP v2: Progressive encryption % WATERLGO
Alice Server Bob
pke

Bob?

pks
genKeyPairs(): (sko, pko). (ska, pka)
Zo = DH(Sko,pkB)
ct = AESy, (io, pt)

pko, ct; hash(pk,)
< (Temporary) keys derived from Z; >

S. R. Verschoor

(In-)secure messaging with SCIMP and OMEMO

ShmooCon 2017

20/33

Proverif results for SCIMP v2 % WATERLOO

Progressive encryption

X Confidentiality /authenticity of first message
v~ Confidentiality /authenticity of all messages and keys (after
SAS)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 21/33

SCIMP % WATERLGO

ProVerif reports that the initial message of SCIMP v2 is not
confidential

This does not impact SCIMP v1
But, ProVerif also verifies that users can detect this when
confirming the SAS later
To determine the impact of this vulnerability, we had to look
at the source code

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 22/33

SCIMP RWATERLSO

GUIERT

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 23/33

SCIMP % UNIVERSITY OF

% WATERLOO

A short example to give a flavor of the code

unsigned long ctxStrLen = 0;
size _t kdkLen;

int keylLen scSCimpCipherBits(ctx—>cipherSuite);

ctxStrLen length in bytes (computing function returns size_t)
kdkLen length in bytes

keyLen function name suggests bit-length, but ke,q is
2 x keyLen bits long

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 24 /33

SCIMP % WATERLGO

Each message has a plaintext tag identifying the type:
keying message; or
user message

The adversary can block the key negotiation using just this
tag, thereby having set up a succesful MitM

The vigilant user might detect this

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 25/33

SCIMP % WATERLGO

Each message has a plaintext tag identifying the type:
keying message; or
user message
The adversary can block the key negotiation using just this
tag, thereby having set up a succesful MitM
The vigilant user might detect this

But the code contains another bug: the receiver overreacts
when a keying message is received out of order

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 25/33

SCIMP % WATERLGO

Each message has a plaintext tag identifying the type:
keying message; or
user message
The adversary can block the key negotiation using just this
tag, thereby having set up a succesful MitM
The vigilant user might detect this

But the code contains another bug: the receiver overreacts
when a keying message is received out of order

only the message tag is inspected
the receiver deletes all local key material
thereby annulling any security set up in the past

The adversary can desynchronize any secure session with a
single out-of-order key message and set up a MitM undetected

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 25/33

OMEMO % WATERLGO

https://conversations.im/omemo/
%&ﬂ(x]
£],
o

https://radicallyopensecurity.com/
https://pacificresearchalliance.com/

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 26 /33

https://conversations.im/omemo/
https://radicallyopensecurity.com/
https://pacificresearchalliance.com/

Multi-device Signal % WATERLOO

https://whispersystenms.org/

Shares the private key between multiple devices?

Generate ephemeral Signal key-pair on desktop

Scan public key with phone (using QR-code)

Set up Signal session between phone and desktop

Send phone’s private-key to desktop

Replace desktop ephemeral key with the received private key

2| imited to one smartphone and a desktop app
S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 27/33

https://whispersystems.org/

Multi-device OMEMO (flawed) % WATERLGO

Each device has its own private key

Each pair of devices sets up a Signal session

A user message gets authenticated-encrypted with a random
key

The ciphertext and tag are sent to each receiving device

The random key is sent to each user inside the Signal session

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 28/33

Multi-device OMEMO (flawed) % WATERLGO

One malicious device breaks authenticity of all messages in the
conversation

Assume Eve convinces Alice that her device belongs to Bob
Eve could intercept any message by Alice. ..

...get the random key that Alice sent her. ..

...encrypt her own message using the same key. ..

...and send it to Bob, who thinks it came from Alice.

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 29/33

Multi-device OMEMO (fixed) % WATERLGO

Each device has its own private key

Each pair of devices sets up a Signal session

A user message gets authenticated-encrypted with a random
key

The ciphertext and tag are sent to each receiving device

The random key and tag are sent to each user inside the
Signal session

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 30/33

Conclusions %Y WATERLOO

Implementing crypto protocols is hard
Even experienced cryptographers get it wrong sometimes

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 31/33

Conclusions %Y WATERLOO

Implementing crypto protocols is hard
Even experienced cryptographers get it wrong sometimes

Despite all the shortcomings of ProVerif, the tool did help me
analyze the protocol and expose flaws

| would love to see more powerful and easier to use tools
if possible: a tool that extracts the model from the code

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 31/33

Conclusions %Y WATERLOO

Implementing crypto protocols is hard

Even experienced cryptographers get it wrong sometimes
Despite all the shortcomings of ProVerif, the tool did help me
analyze the protocol and expose flaws

| would love to see more powerful and easier to use tools

if possible: a tool that extracts the model from the code
For those who just want painfree secure messaging: use Signal

with OMEMO, that no longer means that you are tied to the
Signal application and server

set up your own compatible XMPP server (or create an
account at an existing one)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 31/33

1§I'§mmll Sy

Further reading % WATERLGO

These slides will be available on my website:
https://www.zeroknowledge .me/

ProVerif models are available:
https://github.com/sebastianv89/scimp-proverif

My thesis about SCIMP:
http://repository.tue.nl/844313

Preprint about SCIMP (with Tanja Lange):
https://eprint.iacr.org/2016/703

Get Signal (Android/iPhone):
https://whispersystenms.org/

Try OMEMO (on Android):

https://conversations.im/

OMEMO audit report:
https://conversations.im/omemo/audit.pdf

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 33/33

https://www.zeroknowledge.me/
https://github.com/sebastianv89/scimp-proverif
http://repository.tue.nl/844313
https://eprint.iacr.org/2016/703
https://whispersystems.org/
https://conversations.im/
https://conversations.im/omemo/audit.pdf

Signal %Y WATERLOO

Alice (pka) oWSs Bob (pkg, ys)

Pks. ¥B. Sigas (v8): ¥p

Bob?
Pkg. Y8, Si8sy (VB) [Yol

xp = randDHKey()

s = DH(pka, ys) || DH(x0, pkg) || DH(x0, y5) [l DH(x0, y5)]
rko, cko,o = KDF(s)

x1 = randDHKey()
rky, cki,o = KDF(DH(x1, y8), rko)

mkyo = MACCkm(Oxoi)
cky,1 = MAC¢, ,(0x02)

k,m, iv=KDF(mki)

ct = AES}(pt)

tag = MAC,,(pky, Pkg, x1, ct)

X0, pka; X1, ct, tag

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 34 /33

More on SCIMP %Y WATERLOO

Other discrepancies between the model and the implementation
Group messages have a single symmetric key

Relies on trust in the SC server
Subject to a trivial MitM attack

CCM-mode implementation did not validate authentication
tags

Problem in LibTomCrypt (fixed)
Code contains many timing side-channel vulnerabilities

The message parsing queue has a race condition
Unchecked function error codes

Including memory allocations
State machine based design: good coding style

and helps in making a model of the code
in case of SCIMP: helps find where specs and code differ

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 35/33

More on SCIMP file transfer 4 WATERLGO

Convergent encryption
key = hash(file)
send as SCIMP message
ciphertext = AES_CCMyg, (file)
upload to cloud
Known vulnerabilities of CE:

confirmation of a file
learn the remaining information

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 36/33

More on SCIMP file transfer 4 WATERLGO

Convergent encryption
key = hash(file)
send as SCIMP message
ciphertext = AES_CCMyg, (file)
upload to cloud
Known vulnerabilities of CE:

confirmation of a file
learn the remaining information

SC: receiver does not check hash(file) = key
file injection attack

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 36/33

More on SCIMP file transfer 4 WATERLGO

Convergent encryption
key = hash(file)
send as SCIMP message
ciphertext = AES_CCMyg, (file)
upload to cloud
Known vulnerabilities of CE:
confirmation of a file
learn the remaining information
SC: receiver does not check hash(file) = key

file injection attack
This attack remained in the code until July, when we looked at
the updated code again

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 36/33

	Secure Messaging protocols
	History of online secure messaging
	My involvement

	Formal verification
	ProVerif

	SCIMP
	Version 1
	Proverif results for SCIMP v1
	Version 2
	Proverif results for SCIMP v2

	OMEMO
	Signal
	XMPP

	Conclusions
	Signal
	More on SCIMP

