
(In-)secure messaging with SCIMP and OMEMO

Sebastian Verschoor1

University of Waterloo / Eindhoven University of Technology

ShmooCon 2017
January 15th

1joint work with Tanja Lange

Outline

Secure Messaging protocols
History of online secure messaging
My involvement

Formal verification
ProVerif

SCIMP
Version 1
Proverif results for SCIMP v1
Version 2
Proverif results for SCIMP v2

OMEMO
Signal
XMPP

Conclusions

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 2 / 33

Secure Messaging protocols

EFF ad in Wired magazine (source)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 3 / 33

History of online secure messaging (1/2)

I 1991: Phil Zimmermann creates PGP
I 2004: Nikita Borisov, Ian Goldberg and Eric Brewer create

OTR
I Secure, but requires synchronous environment

I 2011: Gary Belvin introduces SecureSMS (master’s thesis)
I 2012: SCIMP (Silent Circle instant messaging protocol)

I By Vinnie Moscaritolo, Gary Belvin and Phil Zimmermann
I SecureSMS for XMPP
I Even copies variable names and equation numbering from

Belvin’s thesis (despite creating internal inconsistencies)

I February 2014: Open Whisper Systems releases TextSecure v2
I Allows offline initial user message
I Later renamed to Signal

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 4 / 33

History of online secure messaging (2/2)

I May 2014: SC updates to SCIMP v2
I Allows offline initial user message

I August 2015: SC releases code for SCIMP v2
I Adds more inconsistencies between code and documentation

I September 2015: SC discontinues SCIMP, switches to Signal
based protocol

I October 2015: Andreas Straub proposes OMEMO
I Multi-device Signal for XMPP

I Oct-Nov 2016: Trevor Perrin and Moxie Marlinspike release
official specification for the Signal protocol

I Dec 7th 2016: OMEMO gets standardized by the XMPP
Standard Foundation: XEP-0384 (experimental)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 5 / 33

My involvement

I December 2015: My Master’s thesis (at TU/e) on SCIMP
I SCIMP v1 is formally verified by ProVerif to be secure
I SCIMP v2 contains cryptographic flaws
I the implementation contains many security bugs

I June 2016: My cryptographic report on OMEMO
I Minor bug found in multidevice setting

I Developer patches it the same day as reported

I July 2016: Tanja Lange and I release SCIMP preprint paper
I Some of Silent Circle’s code (copied from SCIMP

implementation) still contains bugs that were reported in my
thesis

I Bugs got patched a few days later
I Initial bug report: September 2015

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 6 / 33

https://www.eff.org/pages/eff-ad-wired

Formal verification

I Create a mathematical model of a program
I Ask the computer to prove several theorems about the

program. For example:
I correctness
I confidentiality of data/keys
I authenticity of messages

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 7 / 33

Formal verification

A successful formal verification is not a guarantee that the
implementation is secure:

I The model might not accurately describe the implementation
I Model often needs to be a simplification of the code
I Code evolves

I The attacker model might not be strong enough
I For example, the attacker might implement a side-channel

attack

I The context in which the model is deployed might break
model assumptions

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 8 / 33

Formal verification

So why do we still go through the trouble?

I Unsuccesful formal verification reveals bugs!

I Building the model itself exposes many bugs and omissions

I The model exposes assumptions that would remain implicit in
specs/code

I Successful verification adds trust in protocol by eliminating
possibility of a large class of vulnerabilities

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 9 / 33

ProVerif

I Formal language for modelling interactive protocols
I Requires a model for attacker capabilities

I ProVerif uses Dolev-Yao: attacker has full control over the
network

I Limited computing power: have to break up the protocol in
pieces

I We have to manually prove that their composition is still secure

I No memory model
I But there are some tricks to model key erasure/future secrecy
I Requires manual “proof” that sequential composition is still

secure

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 10 / 33

ProVerif

I ProVerif has limited available primitives

I We can define the required primitives using standard “tricks”
I For example, to create an authenticated channel:

I Create a private channel (confidential and authentic)
I Create a process that runs in parallel with the main process.

Publish everything that is communicated on this channel in a
public channel

I Pro: we can model the protocol very accurately

I Con: requires expertise to implement the correct primitive

I Con: the added complexity makes it very computationally
intensive to prove security

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 11 / 33

ProVerif example

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 12 / 33

ProVerif for SCIMP

Security properties we expect of SCIMP and how to prove them
with ProVerif:

I confidentiality: can an adversary can learn private
keys/messages?

I authenticity/integrity: can an adversary trigger the
“user-accepts” event?

I forward secrecy: leak an updated key, then check
confidentiality of old messages/keys

I future secrecy: publish all key material, then run a key
negotiation over a private channel and check confidentiality

I deniability: run the protocol with the honest user and with
the adversary, then check if the transcripts are
indistinguishable

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 13 / 33

SCIMP v1: Key negotiation

Alice Bob

genKeyPair()
hash(pka)

genKeyPair()
pkb

DH(ska, pkb)
pka,maca

DH(skb, pka)
macb

Keys derived from DH

Confirm SAS

Out of band

Authenticated

SAS: short authentication string
S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 14 / 33

SCIMP v1: Key negotiation

I ECDHE gives shared secret Z , from which are derived:
I ksnd,0, krcv ,0, isnd,0, ircv ,0; for message encryption and

authentication
I maca,macb; to confirm knowledge of Z
I SAS; for authentication of identity
I cs; for rekeying

I User messages can be sent after four key exchange messages
I SAS confirms identity all previous communication

I Requires commitment to pka to prevent collision attack

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 15 / 33

SCIMP v1: Rekeying

Alice Bob

Alice and Bob share cs

hash(pka),MACcs(pka)

pkb,MACcs(pkb)
Verify MACcs pka,maca

Verify MACcs
macb

Keys derived from DH and cs

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 16 / 33

SCIMP v1: Rekeying

I First: store old decryption key (messages might arrive out of
order)

I Optional: SAS comparison only after several rekeyings

I Rekeying ensures future secrecy

I It is not specified when to rekey

I Protocol aborts on error

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 17 / 33

SCIMP v1: Sending user messages

I Encrypt
I ciphertext = AESkj (ij ,plaintext)

I Update keys (ratchet)
I kj+1 = MACkj (ij)
I ij+1 = ij + 1

I Send message:
I ij
I ciphertext

I No message signatures: deniable
I Ratchet enables key erasure, but:

I Out of order messages require you to store old keys
I Old keys compromise future keys

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 18 / 33

Proverif results for SCIMP v1

I First key negotiation (if SAS confirmed over authenticated
channel)

X Confidentiality of keys
X Authenticity of keys and other party identity

I Rekeying

X Confidentiality of keys
X Authenticity of keys and other party identity
I Future secrecy

X When attacker misses first rekeying after compromise
X When users reconfirm the SAS

I Sending user message

X Confidentiality of keys
X Strong secrecy of messages
X Authenticity of messages and keys
X Forward secrecy (if keys can be erased)
X Deniability

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 19 / 33

SCIMP v2: Progressive encryption

Alice Server Bob

pkB

Bob?

pkB

genKeyPairs(): (sk0, pk0), (ska, pka)
Z0 = DH(sk0, pkB)
ct = AESk0(i0, pt)

pk0, ct; hash(pka)

(Temporary) keys derived from Z0

I From here on: regular key negotiation in parallel to user
messages

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 20 / 33

Proverif results for SCIMP v2

I Progressive encryption

× Confidentiality/authenticity of first message
X Confidentiality/authenticity of all messages and keys (after

SAS)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 21 / 33

SCIMP

I ProVerif reports that the initial message of SCIMP v2 is not
confidential

I This does not impact SCIMP v1

I But, ProVerif also verifies that users can detect this when
confirming the SAS later

I To determine the impact of this vulnerability, we had to look
at the source code

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 22 / 33

SCIMP

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 23 / 33

SCIMP

A short example to give a flavor of the code

u n s i g n e d l o n g c t x S t r L e n = 0 ;
s i z e t kdkLen ;
i n t keyLen = s c S C i m p C i p h e r B i t s (c t x−>c i p h e r S u i t e) ;

I ctxStrLen length in bytes (computing function returns size t)

I kdkLen length in bytes

I keyLen function name suggests bit-length, but ksnd is
2 ∗ keyLen bits long

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 24 / 33

SCIMP

I Each message has a plaintext tag identifying the type:
I keying message; or
I user message

I The adversary can block the key negotiation using just this
tag, thereby having set up a succesful MitM

I The vigilant user might detect this
I But the code contains another bug: the receiver overreacts

when a keying message is received out of order
I only the message tag is inspected
I the receiver deletes all local key material
I thereby annulling any security set up in the past

I The adversary can desynchronize any secure session with a
single out-of-order key message and set up a MitM undetected

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 25 / 33

OMEMO

https://conversations.im/omemo/

https://radicallyopensecurity.com/

https://pacificresearchalliance.com/

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 26 / 33

Multi-device Signal

https://whispersystems.org/

Shares the private key between multiple devices2

1. Generate ephemeral Signal key-pair on desktop

2. Scan public key with phone (using QR-code)

3. Set up Signal session between phone and desktop

4. Send phone’s private-key to desktop

5. Replace desktop ephemeral key with the received private key

2Limited to one smartphone and a desktop app
S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 27 / 33

Multi-device OMEMO (flawed)

I Each device has its own private key

I Each pair of devices sets up a Signal session

I A user message gets authenticated-encrypted with a random
key

I The ciphertext and tag are sent to each receiving device

I The random key is sent to each user inside the Signal session

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 28 / 33

Multi-device OMEMO (flawed)

One malicious device breaks authenticity of all messages in the
conversation

I Assume Eve convinces Alice that her device belongs to Bob

I Eve could intercept any message by Alice. . .

I . . . get the random key that Alice sent her. . .

I . . . encrypt her own message using the same key. . .

I . . . and send it to Bob, who thinks it came from Alice.

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 29 / 33

Multi-device OMEMO (fixed)

I Each device has its own private key

I Each pair of devices sets up a Signal session

I A user message gets authenticated-encrypted with a random
key

I The ciphertext and tag are sent to each receiving device

I The random key and tag are sent to each user inside the
Signal session

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 30 / 33

https://conversations.im/omemo/
https://radicallyopensecurity.com/
https://pacificresearchalliance.com/
https://whispersystems.org/

Conclusions

I Implementing crypto protocols is hard
I Even experienced cryptographers get it wrong sometimes

I Despite all the shortcomings of ProVerif, the tool did help me
analyze the protocol and expose flaws

I I would love to see more powerful and easier to use tools
I if possible: a tool that extracts the model from the code

I For those who just want painfree secure messaging: use Signal
I with OMEMO, that no longer means that you are tied to the

Signal application and server
I set up your own compatible XMPP server (or create an

account at an existing one)

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 31 / 33

Thank you

Further reading

I These slides will be available on my website:
https://www.zeroknowledge.me/

I ProVerif models are available:
https://github.com/sebastianv89/scimp-proverif

I My thesis about SCIMP:
http://repository.tue.nl/844313

I Preprint about SCIMP (with Tanja Lange):
https://eprint.iacr.org/2016/703

I Get Signal (Android/iPhone):
https://whispersystems.org/

I Try OMEMO (on Android):
https://conversations.im/

I OMEMO audit report:
https://conversations.im/omemo/audit.pdf

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 33 / 33

Signal

Alice (pkA) OWS Bob (pkB , yB)

pkB , yB , sigskB (yB), yp

Bob?
pkB , yB , sigskB (yB) [, yp]

x0 = randDHKey()
s = DH(pkA, yB) ‖ DH(x0, pkB) ‖ DH(x0, yB) [‖ DH(x0, yp)]
rk0, ck0,0 = KDF(s)

x1 = randDHKey()
rk1, ck1,0 = KDF(DH(x1, yB), rk0)

mk1,0 = MACck1,0(0x01)
ck1,1 = MACck1,0(0x02)
k,m, iv = KDF(mk1,0)
ct = AESiv

k (pt)
tag = MACm(pkA, pkB , x1, ct)

x0, pkA; x1, ct, tag

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 34 / 33

More on SCIMP

Other discrepancies between the model and the implementation
I Group messages have a single symmetric key

I Relies on trust in the SC server
I Subject to a trivial MitM attack

I CCM-mode implementation did not validate authentication
tags

I Problem in LibTomCrypt (fixed)

I Code contains many timing side-channel vulnerabilities

I The message parsing queue has a race condition
I Unchecked function error codes

I Including memory allocations

I State machine based design: good coding style
I and helps in making a model of the code
I in case of SCIMP: helps find where specs and code differ

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 35 / 33

More on SCIMP file transfer

I Convergent encryption
I key = hash(file)

I send as SCIMP message

I ciphertext = AES CCMkey (file)
I upload to cloud

I Known vulnerabilities of CE:
I confirmation of a file
I learn the remaining information

I SC: receiver does not check hash(file) = key
I file injection attack
I This attack remained in the code until July, when we looked at

the updated code again

S. R. Verschoor (In-)secure messaging with SCIMP and OMEMO ShmooCon 2017 36 / 33

https://www.zeroknowledge.me/
https://github.com/sebastianv89/scimp-proverif
http://repository.tue.nl/844313
https://eprint.iacr.org/2016/703
https://whispersystems.org/
https://conversations.im/
https://conversations.im/omemo/audit.pdf

	Secure Messaging protocols
	History of online secure messaging
	My involvement

	Formal verification
	ProVerif

	SCIMP
	Version 1
	Proverif results for SCIMP v1
	Version 2
	Proverif results for SCIMP v2

	OMEMO
	Signal
	XMPP

	Conclusions
	Signal
	More on SCIMP

