QKD Oracles for Authenticated Key Exchange
ia.cr/2025/1671 arxiv.org/abs/2509.12478

Kathrin Hovelmanns?, Daan Planken?, Christian Schaffner?, Sebastian Verschoor?

2025-10-16
TU/e, 2UVA (QuSoft)

https://eprint.iacr.org/2025/1671
https://arxiv.org/abs/2509.12478

« Post

A Critical Analysis of Deploved Use Cases for Quantum
IKey Distribution and Comparison with Post-Quantum
Cryptography

t.-'H'I 2431

Nick Aquina Bruno Cimoli'*!, Soumya Das**!, Kathrin Hovelmanns®*t,
Fiona Johanna Weber®#t, Chigo Okonkwo'®, Simon Rommel',
Boris Skori¢=*, Idelfonso Tafur Monroy'®, Sebastian Verschoor®

8:35 PM - Sep 17, 2025 - 104.8K Views

X « Post

- Martin Shkreli 3

@MartinShkreli
QKD, guantum networking, etc. it's not a thing. $I0NQ will not make any
money off of this, ever.

A Critical Analysis of Deploved Use Cases for Quantum
Key Distribution and Comparison with Post-Quantum
Cryptography
Nick Aquina’®, Bruno Cimoli"*, Soumya Das**!, Kathrin Hivelmanns®t,

Fiona Johanna Weber?#t, Chigo Okonkwo'?, Simon Rommel*#,
Boris Skori¢=*, Idelfonso Tafur Monroy'®, Sebastian Verschoor®

8:35 PM - Sep 17, 2025 - 104.8K Views

X « Post

Martin Shkreli £
@partinShkreli
e H @CcHst17

|i"g' Replying to @MartinShkreli

=" First of all, QKD and networking are not kindred areas of research; QKD

QKD, quantum networking, etc
money off of this, ever.

belongs to networking. Second, having a well-developed quantum network is

one of the possible paths to making quantum computing feasible. Third stop
A Critical Analysis of being a moron Martin Shrekli.

Key Distribution and (

Cryvptography

Nick Aquina*', Bruno Cimoli'*', Soumya Das**, Kathrin Hévelmanns**t,
Fiona Johanna Weber=#% Chigo Okonkwo'*, Simon Rommel',
Boris Skori¢?, Idelfonso Tafur :"nlc:-rn'n_".'!':l. Sebastian Verschoor®

X

« Post

Martin Shkreli €3
@MartinShkreli

QKD, quantum networking, etc
money off of this, ever.

@MartinShkreli

First of all, QKD and networking are not kindred areas of research; QKD
belongs to networking. Second, having a well-developed quantum network is

one of the possible paths to making quantum computing feasible. Third stop
A Critical Analysis of being a moron Martin Shrekli.

[Key Distribution and (
Cry

. Martin Shkreli @ @MartinShkre
Nick Aquinat, Bruno Cimoli!? i invented this field and none of it works sorry

Fiona Johanna Weber=-1,
Boris Skori¢**, Idelfonso T

ep 17, 2025 - 104.8K Views

il
(%]
n
e
=
[(f§]
[1¢]

Quantum Key Distribution

QKD vs PQC

Quantum Key Distribution

- Information theoretically secure
« Provably secure

« Requires hardware updates

Post Quantum Cryptography
- Computationally secure
» Attacker is computationally bounded
« Hardness assumptions
» (Module) lattices / SHA3 | AES
- Requires software update (mostly)

Both approaches share security assumptions
- Key authentication, side channels, supply chains

3/28

Combined QKD and PQC

Can we combine QKD and PQC keys...
- ...such that we have security if either implementation is secure?
« ...such that we maintain ITS if QKD is secure?

Related work
We identify gaps in the existing literature. Existing combiners...
- ...directly use KEM combiners
» This is unsound: QKD is not a KEM
- ...combine keys using a cryptographic hash
» This is only computationally secure, eliminating ITS property of QKD
- ...do not include the key ID in the protocol
» We show that this leads to Dependent Key Attacks

4 [28

QKD interface: ETSI 014

Alice and Bob want shared key R

Alice Bob
1. QKD
Server Server
Client Client

5/ 28

QKD interface: ETSI 014

Alice and Bob want shared key R

Alice Bob
1. QKD
Server Server
2. GetKey()
Client Client

5/ 28

QKD interface: ETSI 014

Alice and Bob want shared key R

Alice Bob
1. QKD

Server Server

2. GetKey() 3. (R, KID)

Client Client

5/ 28

QKD interface: ETSI 014

Alice and Bob want shared key R

Alice Bob
1. QKD

Server Server

2. GetKey() 3. (R, KID)

Client Client
4. KID

5/ 28

QKD interface: ETSI 014

Alice and Bob want shared key R

Alice Bob
1. QKD

Server Server

2. GetKey() 3. (R, KID) 5. GetKeyWithID(KID)

Client Client
4. KID

5/ 28

QKD interface: ETSI 014

Alice and Bob want shared key R

Alice Bob
1. QKD

Server Server

2. GetKey() 3. (R, KID) 5. GetKeyWithID(KID) 6. R

Client Client
4. KID

5/ 28

QKD interface: ETSI 014

Setting:
- E2E QKD (no relaying)
« Server/Client connection is assumed secure

Is the ETSIO14 interface fundamental?

6 /28

QKD interface: ETSI 014

Setting:
- E2E QKD (no relaying)
« Server/Client connection is assumed secure

Is the ETSI014 interface fundamental?
* No, but
» It is what is used in practice
- Finite size effects and low QKD key rates require QKD to run
continuously
» Modelling QKD directly adds (even more) complexity
— In practice users don’t have access to the QKD protocol transcript

6 /28

Dependent Key Attack

Key Encapsulation Mechanism

A KEM is a tuple (KeyGen, Encaps, Decaps)

Key generation generates a Reypair

(pk, sk) i KeyGen()
We encapsulate to a public key

(c,R) i Encaps(pk)

to get a ciphertext and Rey
Decapsulation requires the secret key:

kR < Decaps(sk, c)

8 /28

Key Encapsulation Mechanism

Active security: Indistiguishability under chosen-ciphertext attacks

Defined via a game between challenger and attacker (A)

GAME IND-CCAY:
(pk, sk) i KeyGen()
(c, ky) b2 Encaps(pk)
R, < {0,1)"
b « AP*VU)(pk,c, k)
return b’

Oracle Dec(c’):
ifc’ =c:
return L
return Decaps(sk, ¢’)

9/28

Key Encapsulation Mechanism

Active security: Indistiguishability under chosen-ciphertext attacks

Defined via a game between challenger and attacker (A)

GAME IND-CCA}: Oracle Dec(c’):
(pk, sk) b2 KeyGen() ifc' =c
(c, k) b2 Encaps(pk) return L
p <$_ (0,1} return Decaps(sk, ¢’)
b « AP*VU)(pk,c, k)
return b’

No attacker should be able to distinguish IND-CCA, from IND-CCA,

Adv(A) = |Pr[IND-CCA] = 1] - Pr[IND-CCA] = 1]|

9/28

Key Encapsulation Mechanism

Is this too strong?
- Historically CCA security was seen as a theoretical concerncitation needed
- Daniel Bleichenbacher came with an attack in 1998 [Ble98]
» Attack against RSA with PKCS#1 v1.5 padding
» Send ciphertext to a server
» Server reveals if the padding was invalid
- side-channel leakage
» Server acts as a decryption oracle
- We may as well make that oracle as leaky as possible
 CCA security protects against the above

10 / 28

KEM Combiners

Can we combine KEM, and KEM, such that we strictly add security:
- the combination is secure even if only one component is secure?

Relevant for combining pre- and post-quantum KEMs

1/ 28

KEM Combiners

Can we combine KEM, and KEM, such that we strictly add security:
- the combination is secure even if only one component is secure?

Relevant for combining pre- and post-quantum KEMs

Encaps((pk,, pk,)):
(¢ k) b2 Encaps, (pk,)

(c,, k,) b2 Encaps,(pk,)
return ((c,,c,), k, ® k,)

Is this IND-CCA secure?

1/ 28

KEM Combiners

Mix-and-Match attack [Bin+19]

ADeC(O)((pkw pk,), (€1, €,)r Ry):
(c;, k) b2 Encaps, (pk,)
(c5, k) b2 Encaps,(pk,)

k: <« Dec((c;, c,))
k3 < Dec((c,,c5))
return kR, =R e R & RS ® R,

12 / 28

KEM Combiners

Dual-PRF Combiner [Bin+19]

k <« PRF(d ualPRF(k1 ’ kz)) (C1r CZ))

IND-CCA secure
* but relies on computational assumptions

13/ 28

KEM Combiners

XOR-then-MAC (XtM) Combiner [Bin+19]

Fori € {1,2}:
(k k)<—k.

kem,i’ "“mac,i i
T < MAC(kmac,i’ (C1' CZ))
and then
¢ < (€, T Ty)

R « R ® R

kem,1 kem,2

14 [28

KEM Combiners

XOR-then-MAC (XtM) Combiner [Bin+19]

Fori € {1,2}:
(kkem,i’kmac,i) < R,
T, « MAC(kmaC’i, (c,, cz))
and then
¢ < (¢, T, T,)
R < Riem @ Riem,

But... we show that the proof for XtM is broken
- we don't know a MAC that is strong enough
* it's unclear if XtM is insecure or if its proof just needs repair

14 [28

Authenticated Key Exchange

Authenticated Key Exchange

Establish a shared key between two parties
- parties know each others public key (key authentication is out of scope)
- or (in case of QKD) parties have a pre-shared symmetric key

16 [28

AKE - Example: Triple KEM

“ Alice (sk,)

“ Bob (sk,) “

(pk,, sk,) b KeyGen()

(¢, Ry) b2 Encaps(pk,)

I:)ke' Ch
(c, k) & Encaps(pk,)
S
c @ (c, k,) < Encaps(pk,)

output: k. = KDF(R,, Ry, R,)
This is secure...”

17 | 28

Modelling AKE

Bellare-Rogaway 1993 [BR93]
« many variations

» not always formally compatible
- we work with CK* [Kra05]

Security: session key should be indistinguishable from random
- even if the attacker tampers with messages
» (the protocol may abort if it detects tampering)
- even if involved static keys are revealed (modelling forward secrecy)
» or if local state is revealed (modelling partial device compromise)
- even if other session keys are revealed(!)

18 / 28

Modelling AKE

Bellare-Rogaway 1993 [BR93]
« many variations

» not always formally compatible
- we work with CK* [Kra05]

Security: session key should be indistinguishable from random
- even if the attacker tampers with messages
» (the protocol may abort if it detects tampering)
- even if involved static keys are revealed (modelling forward secrecy)
» or if local state is revealed (modelling partial device compromise)
- even if other session keys are revealed(!)
» for any session, except the matching session:
- the session with the same protocol transcript

18 / 28

Modelling AKE

Execution model:
« Game between a challenger and an attacker
- Attacker establishes many sessions with an intended peer
» Challenger maintains state per session
- Attacker can send protocol messages to a session
» Challenger executes protocol on the input message and state
- updates state
- returns output message to the attacker
» If a session accepts, it computes a session key
- Attacker selects a test session
» Challenger reveals the session key (b = 0) or a random key (b = 1)
» Attacker outputs b’ and wins iff b’ = b

19/ 28

Mixing in QKD

QKD oracle
 KIDs are generated with a global counter
- Honest party access

> GetKey: SID - (qud, KID), where qud i {0, 1}
» GetKeyWithld: (SID, KID) » k
— oracle tracks calling SIDs

— oracle checks that the SIDs are peers
- oracle deletes qud

gkd

20 / 28

Mixing in QKD

QKD oracle
- KIDs are generated with a global counter
- Honest party access .
 GetKey: SID > (kg KID), where k4 < {0,1)"
» GetKeyWithid: (SID, KID) Rakd
— oracle tracks calling SIDs
— oracle checks that the SIDs are peers
- oracle deletes qud
« Attacker access
» Leak: KID » R_, |
g
» Override: (KID R’)sets R.,. <R

' “gkd gkd gkd
— oracle tracks which keys were leaked/overridden

A QKD key can provide security if it was not leaked/overridden

20 / 28

Combined PQC and QKD protocol - Naive protocol

H Alice (sk,) H A, H Bob (sk,) “
C,C,
- (qud, KID) « GetKey()

qud < GetKeyWithID(KID)
I

output: R . = kpqc & qud

21/ 28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

Alice Attacker Bob*

pker Cb pke’ Cb

Gt G KID

22 [28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

Alice’ Alice Attacker Bob* Bob’

pker Cb pke’ Cb

¢ C, C,r KID
PXer Cp pk;, C,

C,r C,y KID'

22 [28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

Alice’ Alice Attacker Bob* Bob’

pker Cb pke’ Cb

¢ C, C,r KID
PKer Cp pki, c,

C,r C,y KID'

C,r Cpr KID

c..c.,KID

a’ "e’

22 [28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

Alice’ Alice Attacker Bob* Bob’

pker Cb pke’ Cb

¢ C, C,r KID
PKer Cp pki, c,

C,r C,y KID'

C,r Cpr KID

c..c.,KID

a’ "e’

22 [28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

Alice’ Alice Attacker Bob* Bob’

pker Cb pke’ Cb

¢ C, C,r KID
PKer Cp pki, c,

C,r C,y KID'

C,r Cpr KID

c..c.,KID

a’ "e’

Ra Rq Ry Ry,
R =R &R, &R,
) (kéqc ® qud) ® (kpqc ® kakd) ® (k;)qc ® kakd)

22 [28

Our protocol

Combined PQC and QKD protocol - Our protocol

2 H Bob (sk,) “

“ Alice (sk,) “

C, C,oy KID

gkd

qud,m'qud,s; <k
F
kqu

kpqc,m’ kpqc,s
T, « MAC(qud'm,transcript)
T, « MAC(k transcript, T,))

pgc,m? (

T

11 °2

output: R___. =R ® R

sess pqc,s gkd,s

24 [28

Combined PQC and QKD protocol - Our protocol

Main theorems (very informal):

- If some PQC secrets are not revealed, our protocol is computationally
secure...”
» as secure as its components
» proof in the QROM

- If the used QKD key is not leaked/overridden, our protocol is statistically

secure
» requires an ITS MAC (one-time MAC)
» requires correctness of the KEMs(!)

25/ 28

Combined PQC and QKD protocol - Our protocol

Consider a session that uses the same kpqc as the test session

- (we prove this session is unique)
- if it is @ matching session, it may not be revealed
- otherwise, the MAC is invalid and Alice aborts

Similar for the session that uses the same qud as the test session

The order of the MACs matters:
- with our oracle, the attacker can change qud without changing KID
 the attacker cannot change an honestly generated kpqc without changing

the transcript

26 [28

Conclusion

Conclusion

Combined cryptography is non-trivial
 Especially if we cannot rely on cryptographic hash functions

It is essential to include the QKD key ID
* In the protocol
* In the model (for example using our oracle)

Future work

- replace Triple KEM with a protocol resistant to state-reveal attacks
- replace perfectly random QKD keys with statistically secure ones

- model post-compromise security (the self-healing property)

- model relaying

- composability of the ETSI014 interface

28 [28

Conclusion

Combined cryptography is non-trivial
» Especially if we cannot rely on cryptographic hash functions

It is essential to include the QKD key ID
* In the protocol

- In the model (for example using our oracle) cefoknowledecie;

talks/

#takd-for-ake-
Future work qkd-for-ake-tcs

- replace Triple KEM with a protocol resistant to state-reveal attacks
- replace perfectly random QKD keys with statistically secure ones

- model post-compromise security (the self-healing property)

- model relaying

- composability of the ETSI014 interface

Thank you for your attention

28 [28

https://zeroknowledge.me/talks/#qkd-for-ake-tcs
https://zeroknowledge.me/talks/#qkd-for-ake-tcs
https://zeroknowledge.me/talks/#qkd-for-ake-tcs
https://zeroknowledge.me/talks/#qkd-for-ake-tcs

Bibliography

[Ble9s]

[Bin+19]

[BR93]

[Kra05]

D. Bleichenbacher, “Chosen Ciphertext Attacks against Protocols Based on the RSA
Encryption Standard PKCS,” in CRYPT098, H. Krawczyk, Ed., Berlin, Heidelberg:
Springer, 1998, pp. 1-12. doi: 10.1007/ BFb0055716.

N. Bindel,). Brendel, M. Fischlin, B. Goncalves, and D. Stebila, “Hybrid Key
Encapsulation Mechanisms and Authenticated Key Exchange,” in Post-Quantum
Cryptography, Jintai Ding and Rainer Steinwandt, Eds., Cham: Springer International
Publishing, Jul. 2019, pp. 206-226. doi: 10.1007/978-3-030-25510-7_12.

M. Bellare and P. Rogaway, “Entity Authentication and Key Distribution,” in CRYPT093,
D. R. Stinson, Ed., Berlin, Heidelberg: Springer, 1993, pp. 232-249. doi:
10.1007/3-540-48329-2_21.

H. Krawczyk, “HMQC: A High-Performance Secure Diffie-Hellman Protocol,” in
CRYPTOO05, V. Shoup, Ed., Berlin, Heidelberg: Springer, 2005, pp. 546-566. doi:
10.1007/11535218_33.

29 [28

https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11535218_33

Formalizing

Qkdlnit() QKD-GET-KEY (sID, €)
01 kID[;f,'{‘ = 0 12 kIDcf,r = kIDct'r + 1
02 gKey:=|[] 13 gSentSid[kID .| := sID
03 qStatus :=[] 14 if gKey[kID o] = L
04 gSentSid := |[] 15 gKey[kID o] <5 {0,1}°
[

05 gRecvSid := 16 qStatus[kID] := HONEST

17 k := qKey[kID ct]
QKD-KEY-HOLDERS(kID) 18 return (kID ., k)

06 return (gSentSid[k[D], qRecvSid[kID])

QKD-GET-KEY-WITH-1D(s/D, kID)

QKD-LEAK(kID) 19 sIDg4s := qSentSid[kID]
07 if gStatus[kID] = HoNEST 20 if (owner[sID 4], peer[s[Dg)) #
08 qgStatus[kID] := REVEALED (peer[sID], owner|[sID])
09 return gKey[kID)] 21 return L
22 if qKey[kID| = L
QKD-OVERRIDE(kID, k) 23 return |
10 qKey[kID] := k 24 qRecvSid[kID cir| += [sID]
11 gStatus[kID] := CORRUPT 25 k := qKey|[kID]

26 gKey[kID]:= L
27 return k

Fig.6: QKD oracle model. Honest sessions have access to the QKD-GET-KEY(s/D,-)
and QKD-GET-KEY-WITH-ID(s/D,-) oracles (in purple), while the adversary may query
QKD-KEY-HOLDERS, QKD-LEAK, and QKD-OVERRIDE (in red). The party calling
QKD-GET-KEY specifies the key length £. kID is a (predictable) key identifier. Besides the func-
tionality, we add some bookkeeping values (in green) that are used in the proofs, but are not available
to either the honest user or the adversary. Keys are removed in Line 26 from the oracle when they
are requested by the receiver (the party calling QKD-GET-KEY-WITH-ID).

30 /28

Init(pk,) SendM2QKD-GET-KEY-WITH-ID(SID,) (5 gb 5 s o)
01 (cv,kp) < Encaps,,,, (pk;) 16 (CayCe, kKID,T1,75) := M2 J/ or abort
02 (pk,,ske) < KeyGen,,, () 17 (kp, ske,m1) := s /| or abort
03 my := (cv, pk,) 18 k. := Decaps,,,, (ski,ca)

04 s := (kp, ske,m1) 19 ki := Decaps,,;, (ske, ce)
05 return (mi,s’) 20 kpge := KDF(ky, ki, k..)
21 kgrq =

SendM1 @R P-GET-RENCID (5 gk 5, pk;,ma) QKD-GET-KEY-WITH-1D(sID, kID)
06 (ew, pk,) :=ma /| or abort 22 if kgga = L : abort
07 ky, := Decaps,,,;(sk:, cs) 23 t:= (mi, (Cq, e, kKID))

08 (Ca: ka) — Encapssmt (ka) 24 (kses:?: 71, T2) = Combine(i-, J: i, qud: kpqc)

09 (c&,ke) — Encapseph(pke) 25 if i # 71 Oor T2 * 745 : abort

10 kpqc = KDF(k{,, k"a, k’e) 26 return kgess

11 (kID, kga) + QKD-GET-KEY (5D, fgxa) _

12 t:= (m1, (ca, Ce, KID)) Combine(is, ir, ¢, kgrd; Kpgc)

13 (Kksess, 71, 72) := Combine(j, i, t, kgpa, kpge) 27 (kgkd,m || kgkd,s) = Kqrd

14 mg = (Ca, Ce, kKID, T1,72) 28 (kpgem || Kpge,s) := Kpge

15 return (ma, ksess) 29 ksess 1= kqkd,s D kpqe,s
30 7= MAG (L, ir))
31 1 1= MACY™ ((t,71,i1,ir))
32 return (kse,,.s,, T1,T2)

Fig.9: A formal implementation of our AKE protocol IT = (Init, SendM1, SendM2), using the QKD
oracle (QKD-GET-KEY, QKD-GET-KEY-WITH-ID), in the case of end-to-end QKD.

31/ 28

Theorem 5.2 (PQC-based security). Let II be the protocol of Fig. 9, where KEMcyp, s Seph-
correct and has key length Cepn, and KEMgqt is dsiar-correct, has collision probabilities p(Encapsg,,,)
and ju(Secretsiqr), and has key length siae. Let A be an IND-StAA-PQC adversary executing IT with
nyt parties that establishes ng sessions that makes at most qy calls to the key-derivation function
KDF (modelled as a QROM). Then there exist IND-CPA adversary By against KEM.,, IND-CPA ad-

versary By against KEMg; o, IND-CCA adversary Bs against KEMg; o, and OT-sEUF-CMA adversary
By against MACP?®) such that

AdVIND_StAA_PQC(H A) <

1
9 IND-CPA
21, (5810}1 + Advicewm,,, (B1) + 2am v/ 2bern)

) 1
+ 20 Nyt (5stat + AdviRen M (B2) + 2qm m) + 2 ng - u(Encaps,;,;)

) 2qH SEUF-
+ 87Nyt (53?‘”&:& + AdvRan - (Bs) + ndpu(Secretsiar) + M=t nsAdvsEUF CMA(B4))

where the runtime of By, By, Bs, By is about that of A.

32 /28

Theorem 5.5 (QKD-based security). Let II be the protocol of Fig. 9, where KEM,p, is Gepn -

correct and KEMgqt s Ogtqt-correct. Let A be an IND-AA-QKD adversary executing II that establishes
ns sessions. Then there exist and OT-sEUF-CMA adversary B; against MAC*D gych that

Advy'NP-AA-QKD (7 Ay < 9 (ns(zésm + Oepn) + Adv%‘(ﬁi&‘iﬁgcm(&))

where the runtime of By is potentially unbounded.

33 /28

An attack is trivial if no protocol can protect against it:

- if the adversary reveals the session key directly

- if the adversary reveals both static key and state
» (for both properties:) via the test session or the matching session

- if the adversary compromised the peer’s static key and impersonated
them

Exception: an attack is non-trivial it creates multiple matching sessions
 a proper AKE shares the session key with only one other session

Or in case of QKD:
- if all used QKD keys were leaked/overridden

34 [28

	Quantum Key Distribution
	QKD vs PQC
	Combined QKD and PQC
	Related work

	QKD interface: ETSI 014

	Dependent Key Attack
	Key Encapsulation Mechanism
	KEM Combiners

	Authenticated Key Exchange
	AKE - Example: Triple KEM
	Modelling AKE
	Mixing in QKD
	Combined PQC and QKD protocol - Naive protocol
	Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

	Our protocol
	Combined PQC and QKD protocol - Our protocol

	Conclusion
	Future work
	Future work

	Bibliography
	Formalizing
	Trivial

