
QKD Oracles for Authenticated Key Exchange
ia.cr/2025/1671 arxiv.org/abs/2509.12478

Kathrin Hövelmanns¹, Daan Planken², Christian Schaffner², Sebastian Verschoor²
2025-10-16
¹TU/e, ²UvA (QuSoft)

https://eprint.iacr.org/2025/1671
https://arxiv.org/abs/2509.12478

Quantum Key Distribution

QKD vs PQC

Quantum Key Distribution
• Information theoretically secure
• Provably secure
• Requires hardware updates

Post Quantum Cryptography
• Computationally secure
‣ Attacker is computationally bounded

• Hardness assumptions
‣ (Module) lattices / SHA3 / AES

• Requires software update (mostly)

Both approaches share security assumptions
• Key authentication, side channels, supply chains

3 / 28

Combined QKD and PQC

Can we combine QKD and PQC keys…
• …such that we have security if either implementation is secure?
• …such that we maintain ITS if QKD is secure?

Related work
We identify gaps in the existing literature. Existing combiners…
• …directly use KEM combiners
‣ This is unsound: QKD is not a KEM

• …combine keys using a cryptographic hash
‣ This is only computationally secure, eliminating ITS property of QKD

• …do not include the key ID in the protocol
‣ We show that this leads to Dependent Key Attacks

4 / 28

QKD interface: ETSI 014

Alice and Bob want shared key 𝑘

1. QKD
Server

Client

Alice

Server

Client

Bob

5 / 28

QKD interface: ETSI 014

Alice and Bob want shared key 𝑘

1. QKD

2. GetKey()

Server

Client

Alice

Server

Client

Bob

5 / 28

QKD interface: ETSI 014

Alice and Bob want shared key 𝑘

1. QKD

2. GetKey() 3. (𝑘, KID)

Server

Client

Alice

Server

Client

Bob

5 / 28

QKD interface: ETSI 014

Alice and Bob want shared key 𝑘

1. QKD

2. GetKey() 3. (𝑘, KID)

4. KID

Server

Client

Alice

Server

Client

Bob

5 / 28

QKD interface: ETSI 014

Alice and Bob want shared key 𝑘

1. QKD

2. GetKey() 3. (𝑘, KID)

4. KID

5. GetKeyWithID(KID)

Server

Client

Alice

Server

Client

Bob

5 / 28

QKD interface: ETSI 014

Alice and Bob want shared key 𝑘

1. QKD

2. GetKey() 3. (𝑘, KID)

4. KID

5. GetKeyWithID(KID) 6. 𝑘

Server

Client

Alice

Server

Client

Bob

5 / 28

QKD interface: ETSI 014

Setting:
• E2E QKD (no relaying)
• Server/Client connection is assumed secure

Is the ETSI014 interface fundamental?

6 / 28

QKD interface: ETSI 014

Setting:
• E2E QKD (no relaying)
• Server/Client connection is assumed secure

Is the ETSI014 interface fundamental?
• No, but
‣ It is what is used in practice

– Finite size effects and low QKD key rates require QKD to run
continuously

‣ Modelling QKD directly adds (even more) complexity
– In practice users don’t have access to the QKD protocol transcript

6 / 28

Dependent Key Attack

Key Encapsulation Mechanism

A KEM is a tuple (KeyGen, Encaps, Decaps)

Key generation generates a keypair

(pk, sk) ←
$

KeyGen()

We encapsulate to a public key

(𝑐, 𝑘) ←
$

Encaps(pk)

to get a ciphertext and key

Decapsulation requires the secret key:

𝑘 ← Decaps(sk, 𝑐)

8 / 28

Key Encapsulation Mechanism

Active security: Indistiguishability under chosen-ciphertext attacks

Defined via a game between challenger and attacker (𝐴)

GAME IND-CCA𝐴
𝑏:

(pk, sk) ←
$

KeyGen()
(𝑐, 𝑘0) ←

$
Encaps(pk)

𝑘1 ←
$

{0, 1}ℓ

𝑏′ ← 𝐴Dec(⋅)(pk, 𝑐, 𝑘𝑏)
return b’

Oracle Dec(𝑐′):
if 𝑐′ = 𝑐:

return ⊥
return Decaps(sk, 𝑐′)

9 / 28

Key Encapsulation Mechanism

Active security: Indistiguishability under chosen-ciphertext attacks

Defined via a game between challenger and attacker (𝐴)

GAME IND-CCA𝐴
𝑏:

(pk, sk) ←
$

KeyGen()
(𝑐, 𝑘0) ←

$
Encaps(pk)

𝑘1 ←
$

{0, 1}ℓ

𝑏′ ← 𝐴Dec(⋅)(pk, 𝑐, 𝑘𝑏)
return b’

Oracle Dec(𝑐′):
if 𝑐′ = 𝑐:

return ⊥
return Decaps(sk, 𝑐′)

No attacker should be able to distinguish IND-CCA0 from IND-CCA1

Adv(𝐴) = |Pr[IND-CCA𝐴
0 = 1] − Pr[IND-CCA𝐴

1 = 1]|

9 / 28

Key Encapsulation Mechanism

Is this too strong?
• Historically CCA security was seen as a theoretical concerncitation needed

• Daniel Bleichenbacher came with an attack in 1998 [Ble98]
‣ Attack against RSA with PKCS#1 v1.5 padding
‣ Send ciphertext to a server
‣ Server reveals if the padding was invalid

– side-channel leakage
‣ Server acts as a decryption oracle

– We may as well make that oracle as leaky as possible
• CCA security protects against the above

10 / 28

KEM Combiners

Can we combine KEM1 and KEM2 such that we strictly add security:
• the combination is secure even if only one component is secure?

Relevant for combining pre- and post-quantum KEMs

11 / 28

KEM Combiners

Can we combine KEM1 and KEM2 such that we strictly add security:
• the combination is secure even if only one component is secure?

Relevant for combining pre- and post-quantum KEMs

Encaps((pk1, pk2)):
(𝑐1, 𝑘1) ←

$
Encaps1(pk1)

(𝑐2, 𝑘2) ←
$

Encaps2(pk2)
return ((𝑐1, 𝑐2), 𝑘1 ⊕ 𝑘2)

Is this IND-CCA secure?

11 / 28

KEM Combiners

Mix-and-Match attack [Bin+19]

𝐴Dec(⋅)((pk1, pk2), (𝑐1, 𝑐2), 𝑘𝑏):
(𝑐′

1, 𝑘′
1) ←

$
Encaps1(pk1)

(𝑐′
2, 𝑘′

2) ←
$

Encaps2(pk2)
𝑘∗

1 ← Dec((𝑐′
1, 𝑐2)) // (𝑐′

1, 𝑐2) ≠ (𝑐1, 𝑐2)
𝑘∗

2 ← Dec((𝑐1, 𝑐′
2)) // (𝑐1, 𝑐′

2) ≠ (𝑐1, 𝑐2)
return 𝑘𝑏 = 𝑘∗

1 ⊕ 𝑘′
1 ⊕ 𝑘∗

2 ⊕ 𝑘′
2

12 / 28

KEM Combiners

Dual-PRF Combiner [Bin+19]

𝑘 ← PRF(dualPRF(𝑘1, 𝑘2), (𝑐1, 𝑐2))

IND-CCA secure
• but relies on computational assumptions

13 / 28

KEM Combiners

XOR-then-MAC (XtM) Combiner [Bin+19]

For 𝑖 ∈ {1, 2} :

(𝑘kem,𝑖, 𝑘mac,𝑖) ← 𝑘𝑖

𝜏𝑖 ← MAC(𝑘mac,𝑖, (𝑐1, 𝑐2))

and then

𝑐 ← (𝑐1, 𝑐2, 𝜏1, 𝜏2)

𝑘 ← 𝑘kem,1 ⊕ 𝑘kem,2

14 / 28

KEM Combiners

XOR-then-MAC (XtM) Combiner [Bin+19]

For 𝑖 ∈ {1, 2} :

(𝑘kem,𝑖, 𝑘mac,𝑖) ← 𝑘𝑖

𝜏𝑖 ← MAC(𝑘mac,𝑖, (𝑐1, 𝑐2))

and then

𝑐 ← (𝑐1, 𝑐2, 𝜏1, 𝜏2)

𝑘 ← 𝑘kem,1 ⊕ 𝑘kem,2

But… we show that the proof for XtM is broken
• we don’t know a MAC that is strong enough
• it’s unclear if XtM is insecure or if its proof just needs repair

14 / 28

Authenticated Key Exchange

Authenticated Key Exchange

Establish a shared key between two parties
• parties know each others public key (key authentication is out of scope)
• or (in case of QKD) parties have a pre-shared symmetric key

16 / 28

AKE - Example: Triple KEM

pk𝑒, 𝑐𝑏

𝑐𝑎, 𝑐𝑒

Alice (sk𝑎) Bob (sk𝑏)

(pk𝑒, sk𝑒) ←
$

KeyGen()

(𝑐𝑏, 𝑘𝑏) ←
$

Encaps(pk𝑏)

(𝑐𝑎, 𝑘𝑎) ←
$

Encaps(pk𝑎)

(𝑐𝑒, 𝑘𝑒) ←
$

Encaps(pk𝑒)

output: 𝑘pqc = KDF(𝑘𝑏, 𝑘𝑎, 𝑘𝑒)

This is secure…∗

17 / 28

Modelling AKE

Bellare-Rogaway 1993 [BR93]
• many variations
‣ not always formally compatible

• we work with CK+ [Kra05]

Security: session key should be indistinguishable from random
• even if the attacker tampers with messages
‣ (the protocol may abort if it detects tampering)

• even if involved static keys are revealed (modelling forward secrecy)
‣ or if local state is revealed (modelling partial device compromise)

• even if other session keys are revealed(!)

18 / 28

Modelling AKE

Bellare-Rogaway 1993 [BR93]
• many variations
‣ not always formally compatible

• we work with CK+ [Kra05]

Security: session key should be indistinguishable from random
• even if the attacker tampers with messages
‣ (the protocol may abort if it detects tampering)

• even if involved static keys are revealed (modelling forward secrecy)
‣ or if local state is revealed (modelling partial device compromise)

• even if other session keys are revealed(!)
‣ for any session, except the matching session:

– the session with the same protocol transcript

18 / 28

Modelling AKE

Execution model:
• Game between a challenger and an attacker
• Attacker establishes many sessions with an intended peer
‣ Challenger maintains state per session

• Attacker can send protocol messages to a session
‣ Challenger executes protocol on the input message and state

– updates state
– returns output message to the attacker

‣ If a session accepts, it computes a session key
• Attacker selects a test session
‣ Challenger reveals the session key (𝑏 = 0) or a random key (𝑏 = 1)
‣ Attacker outputs 𝑏′ and wins iff 𝑏′ = 𝑏

19 / 28

Mixing in QKD

QKD oracle
• KIDs are generated with a global counter
• Honest party access
‣ GetKey: SID ↦ (𝑘qkd, KID), where 𝑘qkd ←

$
{0, 1}ℓ

‣ GetKeyWithId: (SID, KID) ↦ 𝑘qkd
– oracle tracks calling SIDs
– oracle checks that the SIDs are peers
– oracle deletes 𝑘qkd

20 / 28

Mixing in QKD

QKD oracle
• KIDs are generated with a global counter
• Honest party access
‣ GetKey: SID ↦ (𝑘qkd, KID), where 𝑘qkd ←

$
{0, 1}ℓ

‣ GetKeyWithId: (SID, KID) ↦ 𝑘qkd
– oracle tracks calling SIDs
– oracle checks that the SIDs are peers
– oracle deletes 𝑘qkd

• Attacker access
‣ Leak: KID ↦ 𝑘qkd
‣ Override: (KID, 𝑘′

qkd) sets 𝑘qkd ← 𝑘′
qkd

– oracle tracks which keys were leaked/overridden

A QKD key can provide security if it was not leaked/overridden

20 / 28

Combined PQC and QKD protocol - Naive protocol

pk𝑒, 𝑐𝑏

𝑐𝑎, 𝑐𝑒

KID

Alice (sk𝑎) Bob (sk𝑏)

(𝑘qkd, KID) ← GetKey()

𝑘qkd ← GetKeyWithID(KID)

output: 𝑘sess = 𝑘pqc ⊕ 𝑘qkd

21 / 28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

pk𝑒, 𝑐𝑏 pk𝑒, 𝑐𝑏

𝑐𝑎, 𝑐𝑒, KID

Alice Attacker Bob∗

22 / 28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

pk𝑒, 𝑐𝑏 pk𝑒, 𝑐𝑏

𝑐𝑎, 𝑐𝑒, KID
pk′

𝑒, 𝑐′
𝑏 pk′

𝑒, 𝑐′
𝑏

𝑐′
𝑎, 𝑐′

𝑒, KID′

Alice Attacker Bob∗Alice′ Bob′

22 / 28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

pk𝑒, 𝑐𝑏 pk𝑒, 𝑐𝑏

𝑐𝑎, 𝑐𝑒, KID
pk′

𝑒, 𝑐′
𝑏 pk′

𝑒, 𝑐′
𝑏

𝑐′
𝑎, 𝑐′

𝑒, KID′
𝑐𝑎, 𝑐𝑒, KID′

𝑐′
𝑎, 𝑐′

𝑒, KID

Alice Attacker Bob∗Alice′ Bob′

22 / 28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

pk𝑒, 𝑐𝑏 pk𝑒, 𝑐𝑏

𝑐𝑎, 𝑐𝑒, KID
pk′

𝑒, 𝑐′
𝑏 pk′

𝑒, 𝑐′
𝑏

𝑐′
𝑎, 𝑐′

𝑒, KID′
𝑐𝑎, 𝑐𝑒, KID′

𝑐′
𝑎, 𝑐′

𝑒, KID

Alice Attacker Bob∗Alice′ Bob′

𝑘′
𝑎 𝑘𝑎 𝑘∗

𝑏 𝑘′
𝑏

22 / 28

Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

pk𝑒, 𝑐𝑏 pk𝑒, 𝑐𝑏

𝑐𝑎, 𝑐𝑒, KID
pk′

𝑒, 𝑐′
𝑏 pk′

𝑒, 𝑐′
𝑏

𝑐′
𝑎, 𝑐′

𝑒, KID′
𝑐𝑎, 𝑐𝑒, KID′

𝑐′
𝑎, 𝑐′

𝑒, KID

Alice Attacker Bob∗Alice′ Bob′

𝑘′
𝑎 𝑘𝑎 𝑘∗

𝑏 𝑘′
𝑏

𝑘∗
𝑏 = 𝑘′

𝑎 ⊕ 𝑘𝑎 ⊕ 𝑘′
𝑏

= (𝑘′
pqc ⊕ 𝑘qkd) ⊕ (𝑘pqc ⊕ 𝑘′

qkd) ⊕ (𝑘′
pqc ⊕ 𝑘′

qkd)

22 / 28

Our protocol

Combined PQC and QKD protocol - Our protocol

pk𝑒, 𝑐𝑏

𝑐𝑎, 𝑐𝑒, KID

𝜏1, 𝜏2

Alice (sk𝑎) Bob (sk𝑏)

(𝑘qkd,𝑚, 𝑘qkd,𝑠) ← 𝑘qkd
(𝑘pqc,𝑚, 𝑘pqc,𝑠) ← 𝑘pqc

𝜏1 ← MAC(𝑘qkd,𝑚, transcript)
𝜏2 ← MAC(𝑘pqc,𝑚, (transcript, 𝜏1))

output: 𝑘sess = 𝑘pqc,𝑠 ⊕ 𝑘qkd,𝑠

24 / 28

Combined PQC and QKD protocol - Our protocol

Main theorems (very informal):

• If some PQC secrets are not revealed, our protocol is computationally
secure…∗

‣ as secure as its components
‣ proof in the QROM

• If the used QKD key is not leaked/overridden, our protocol is statistically
secure
‣ requires an ITS MAC (one-time MAC)
‣ requires correctness of the KEMs(!)

25 / 28

Combined PQC and QKD protocol - Our protocol

Consider a session that uses the same 𝑘pqc as the test session
• (we prove this session is unique)
• if it is a matching session, it may not be revealed
• otherwise, the MAC is invalid and Alice aborts

Similar for the session that uses the same 𝑘qkd as the test session

The order of the MACs matters:
• with our oracle, the attacker can change 𝑘qkd without changing KID
• the attacker cannot change an honestly generated 𝑘pqc without changing

the transcript

26 / 28

Conclusion

Conclusion

Combined cryptography is non-trivial
• Especially if we cannot rely on cryptographic hash functions

It is essential to include the QKD key ID
• In the protocol
• In the model (for example using our oracle)

Future work
• replace Triple KEM with a protocol resistant to state-reveal attacks
• replace perfectly random QKD keys with statistically secure ones
• model post-compromise security (the self-healing property)
• model relaying
• composability of the ETSI014 interface

28 / 28

Conclusion

Combined cryptography is non-trivial
• Especially if we cannot rely on cryptographic hash functions

It is essential to include the QKD key ID
• In the protocol
• In the model (for example using our oracle)

Future work
• replace Triple KEM with a protocol resistant to state-reveal attacks
• replace perfectly random QKD keys with statistically secure ones
• model post-compromise security (the self-healing property)
• model relaying
• composability of the ETSI014 interface

zeroknowledge.me/
talks/

#qkd-for-ake-tcs

Thank you for your attention

28 / 28

https://zeroknowledge.me/talks/#qkd-for-ake-tcs
https://zeroknowledge.me/talks/#qkd-for-ake-tcs
https://zeroknowledge.me/talks/#qkd-for-ake-tcs
https://zeroknowledge.me/talks/#qkd-for-ake-tcs

Bibliography

[Ble98]
D. Bleichenbacher, “Chosen Ciphertext Attacks against Protocols Based on the RSA
Encryption Standard PKCS,” in CRYPTO98, H. Krawczyk, Ed., Berlin, Heidelberg:
Springer, 1998, pp. 1–12. doi: 10.1007/BFb0055716.

[Bin+19]

N. Bindel, J. Brendel, M. Fischlin, B. Goncalves, and D. Stebila, “Hybrid Key
Encapsulation Mechanisms and Authenticated Key Exchange,” in Post-Quantum
Cryptography, Jintai Ding and Rainer Steinwandt, Eds., Cham: Springer International
Publishing, Jul. 2019, pp. 206–226. doi: 10.1007/978-3-030-25510-7_12.

[BR93]
M. Bellare and P. Rogaway, “Entity Authentication and Key Distribution,” in CRYPTO93,
D. R. Stinson, Ed., Berlin, Heidelberg: Springer, 1993, pp. 232–249. doi:
10.1007/3-540-48329-2_21.

[Kra05]
H. Krawczyk, “HMQC: A High-Performance Secure Diffie-Hellman Protocol,” in
CRYPTO05, V. Shoup, Ed., Berlin, Heidelberg: Springer, 2005, pp. 546–566. doi:
10.1007/11535218_33.

29 / 28

https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11535218_33

Formalizing

30 / 28

Formalizing

31 / 28

Formalizing

32 / 28

Formalizing

33 / 28

Trivial

An attack is trivial if no protocol can protect against it:
• if the adversary reveals the session key directly
• if the adversary reveals both static key and state
‣ (for both properties:) via the test session or the matching session

• if the adversary compromised the peer’s static key and impersonated
them

Exception: an attack is non-trivial it creates multiple matching sessions
• a proper AKE shares the session key with only one other session

Or in case of QKD:
• if all used QKD keys were leaked/overridden

34 / 28

	Quantum Key Distribution
	QKD vs PQC
	Combined QKD and PQC
	Related work

	QKD interface: ETSI 014

	Dependent Key Attack
	Key Encapsulation Mechanism
	KEM Combiners

	Authenticated Key Exchange
	AKE - Example: Triple KEM
	Modelling AKE
	Mixing in QKD
	Combined PQC and QKD protocol - Naive protocol
	Combined PQC and QKD protocol - Naive protocol: Dependent Key Attack

	Our protocol
	Combined PQC and QKD protocol - Our protocol

	Conclusion
	Future work
	Future work

	Bibliography
	Formalizing
	Trivial

