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Interactive proof systems

I A statement (x) is True iff x ∈ L for some fixed language L
I Example: L is the language of all pairs of graphs that are

isomorphic, x is the pair (G0,G1)

I Proving as an interactive procedure
I Prover (P) convinces Verifier (V ) of the truth of some

statement (x) by giving a proof/certificate/witness (w)

I (Optional) restrictions:
I Verifier is modelled by a Turing machine
I Verifier runs in polynomial time

I Size of the proof (|w |) is polynomial

I Verifier might only accept with probability ≥ 2/3
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Zero-knowledge

I In general, a proof system is concerned about two things:
I Completeness: if both parties play honest, will V accept?
I Soundness: if P cheats, will V reject?

I Zero-knowledge handles the case in which the V cheats:
I Zero-knowledge: the protocol asserts nothing but x ∈ L
I Leakage includes:

I V cannot convince a third party of x ∈ L
I V cannot convince a third party of “P knows that x ∈ L”
I V cannot convince a third party that any conversation

between P and V took place at all

I How to prove “Zero-knowledgeness”?
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Zero-knowledge protocols

I An interactive protocol between P and V is zero-knowledge
on L if for all possible (cheating) verifiers (V ′):

ViewP,V ′ is approximable on L′ = {(x ,H)|x ∈ L ∧ |H| = |x |c}
I View is all V ′ sees

I Random bits
I Messages from P
I Additional helper data H

I A View is approximable if there exists an efficient Turing
machine S that creates a distribution that is indistinguishable
from the View.

I S is called the simulator
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Defining indistinguishability

I Families of random variables U : {U(x)} and V : {V (x)}
I If there is no judge J that can tell if the sample came from

U(x) or V (x), U and V are indistinguishable

I Types of indistinguishability:
I Perfect: J gets arbitrary many samples

I U = V

I Statistical: J gets only polynomial many samples
I Statistical difference between U and V is negligible

I Computational: J gets only polynomial many samples and
has only polynomial time to distinguish them

I U and V cannot be distinguished by an efficient algorithm

S. R. Verschoor Zero-Knowledge Against Quantum Attacks 2016–12–08 7 / 27



Applications of zero-knowledge

I Online authentication scheme
I Client proves (in zero-knowledge) to a web-server that they

know the password
I (Note: this is not how the internet actually works: usually you

just send a plaintext password)

I

S. R. Verschoor Zero-Knowledge Against Quantum Attacks 2016–12–08 8 / 27



Example: graph isomorphism

Common input x = (G0,G1):

G0 G1

To prove: G0 ' G1
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Example: graph isomorphism

Prover knows permutation σ such that σ(G1) = G0:

G0 = σ(G1)

σ←−

G1

σ can only exist if G0 ' G1
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Example: graph isomorphism

Prover chooses random permutation π and computes H = π(G0):

G0 = σ(G1)

π−→

H = π(G0) = πσ(G1)

Prover sends H to Verifier
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Example: graph isomorphism

Prover Verifier

random π

H = π(G0)

random bit a

a

τ = πσa

accept iff τ(Ga) = H

I Repeat until V is satisfied
I To be a Zero-knowledge proof of G0 ' G1, we need to prove:

I Completeness: G0 ' G1 ⇒ Pr[accept] = 1
I Soundness: G0 6' G1 ⇒ Pr[reject] = 1/2
I Zero-knowledge: does a simulator exist?
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Example: graph isomorphism

I Q: Does a simulator exist?

I A: Sure, just take out your time machine!

I Define a simulator SV ′
that uses V ′ as a subroutine

1. Pick a random permutation τ and bit a′

2. Send H = τ(Ga′) to V ′

3. V ′ replies with a

4. if a′ = a: send τ
else: go back in time (rewind V ′) and try again!

I Efficient: expected to rewind once

I ViewP,V ′ = ViewSV ′ ,V ′
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Example: graph isomorphism

I It’s all software: we don’t need a physical time machine

I SV ′
sets up V ′ in a virtual machine

I Before every iteration of the protocol: take a snapshot

I if a′ = a: success
else: restart from the snapshot and try again

I What have we achieved?
I Any transcript that V ′ gives to J could have been created by

SV ′
, who does not have any knowledge

I So no transcript can leak any knowledge
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Quantum Attacks

What if cheating verifier V ′ has a quantum computer?

I V ′ could have auxiliary input entangled with qubits not
accessible to V ′ or SV ′

, but available to the judge
I Rewinding cannot be applied generally

I Quantum information cannot be copied
I Running V ′ might involve a irreversible measurement
I Determining if a simulation was succesful requires a

measurement
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Quantum Zero-Knowledge

I Need to refine our notion of indistinguishability

I Instead of the View, we take a look at possible quantum
channels that the cheating verifier can implement

I We use the Kitaev diamond norm distance between two
channels Φ0 and Φ1:

I 1
2‖Φ0 − Φ1‖�

I Describes the maximum bias with which a physical process can
distinguish them

I Covers distinguishing with entangled states
I This is analogous to the trace distance between quantum states
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Quantum rewinding lemma

We can’t rewind in general. But we can if:

I Given a circuit Q of the form:

I In general, this circuit implements:

Q |ψ〉 |0k〉 =
√
p(ψ) |0〉 |φ0(ψ)〉+

√
1− p(ψ) |1〉 |φ1(ψ)〉

I We can rewind if p = p(ψ) is constant (independent of ψ).

I Goal: to get |φ0(ψ)〉 with probability arbitrary close to 1
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Quantum rewinding lemma

I Getting |φ0(ψ)〉 from |ψ〉:
1. Apply Q
2. Repeat:
3. Measure first output register
4. If outcome is 1:
5. Apply Q−1

6. Apply U = 2 |0m〉〈0m| − 1 to ancilla
7. Apply Q
8. Output |φ〉

I After applying Q, we get in state

Q |ψ〉 |0k〉 =
√
p |0〉 |φ0(ψ)〉+

√
1− p |1〉 |φ1(ψ)〉

I If we measure 0, we are done! Else we apply
Q(I ⊗U)Q−1 |1〉 |φ(ψ)〉

= 2
√

p(1− p) |0〉 |φ0(ψ)〉+ (1− 2p) |1〉 |φ1(ψ)〉
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Example: graph isomorphism

A cheating verifier has the following interaction:

P0

V ′1

P1

V ′2

|ψ〉

π(G0)

π

ρ

a πσa

Where ρ = 1
n!

∑
π∈Sn

∑
a∈{0,1}

Mπ(G0),a
|ψ〉〈ψ|M∗π(G0),a

The channel Φ is then the tensor product of all registers in the view
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Example: graph isomorphism

We simulate this using the following Q:

|ψ〉
V ′1 •

T

Where T creates a uniform superposition:

1√
2n!

∑
τ∈Sn

∑
b∈{0,1}

|τ(Gb)〉 |b〉 |τ〉
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Example: graph isomorphism

I Works out to p = 1/2 with compatible states φ0 and φ1
I Applying the Quantum Rewinding lemma once to |1〉 |φ1(ψ)〉

2
√

p(1− p) |0〉 |φ0(ψ)〉+ (1− 2p) |1〉 |φ1(ψ)〉
= 2

√
1/4 |0〉 |φ0(ψ)〉+ 0 |1〉 |φ1(ψ)〉

= |0〉 |φ0(ψ)〉
I For graph isomorphism, we need to rewind (at most) once
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Generalizing the results

I Relax the assumption that p is independent of |ψ〉
I When p(ψ) varies only by an exponentially small amount, we

can still achieve statistical zero-knowledge

I The construction applies to all protocols of the form:
1. P sends a message to V

I Message could even be some quantum state

2. V flips a fair coin and sends the result to P
3. P responds with a second message

I Message could even be some quantum state

I All problems in HVQSZK can be expressed in this form
I HVQSZK = QSZK

I SZK ⊆ HVQSZK
I Not known: are all classical proofs in SZK secure against

quantum attacks?
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Generalizing the results

I Complexity class results
I QSZK is closed under complement
I The “close quantum states” problem is complete for QSZK
I QSZK ⊆ QIP(2)
I QSZKa,b = QSZK1,c with c polynomialy small
I Similar results for QZK and QPZK

I Non-interactive zero-knowledge proofs
I Quantum non-interactive zero-knowledge proofs
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Further reading

I Zero Knowledge Proofs: An illustrated primer – Matthew
Green (2007) [link]

I Zero-Knowledge Against Quantum Attacks – John Watrous
(2009) [link]

I Quantum Proofs – Thomas Vidick, John Watrous (2016) [link]

I Slides will be available at my website: [zeroknowledge.me]
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https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
http://epubs.siam.org/doi/abs/10.1137/060670997
https://arxiv.org/abs/1610.01664
https://www.zeroknowledge.me/


Thank you



Complexity classes

We can use the interactive games to define complexity classes
I NP: Non-deterministic Polynomial time

I L ∈ NP if a short proof exists for an efficient verifier
I Formally: there exist polynomials p, q and verifier V such that

∀x ∈ L : ∃w : |w | = q(|x |) ∧ V (x ,w) = 1
∀x 6∈ L : |w | = q(|x |) ⇒ V (x ,w) = 0
∀x ,w : V (x ,w) runs in time p(|x |)

I P: Polynomial time
I L ∈ P if an efficient verifier exists

I Formally: There exists a polynomial p and verifier V such that
∀x ∈ L : V (x , ∅) = 1
∀x 6∈ L : V (x , ∅) = 0
∀x : V (x , ∅) runs in time p(|x |)

I P ⊆ NP
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Complexity classes

I BPP: Bounded-error Probabilistic Polynomial time
I L ∈ BPP if an efficient probabilistic verifier exists
∀x ∈ L : Pr[V (x , ∅) = 1] ≥ 2/3
∀x 6∈ L : Pr[V (x , ∅) = 0] ≤ 1/3

I MA: Merlin-Arthur
I Arthur is a BPP verifier

I AM: Arthur-Merlin
I Arthur can send a message (challenge) to Merlin before Merlin

provides a proof

I IP: Interactive Proof systems
I Like AM, but allows many rounds interactions

I P ⊆ BPP ⊆MA ⊆ AM ⊆ IP
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Complexity class relations

QIP

IP=PSPACE

QAM

CZKQSZK AM

SZKNIQSZK QMA

NISZK PZK BQP MA

BPP NP

P
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Complexity class relations
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