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Zero-Knowledge Against Quantum Attacks

zero-knowledge proofs are one of the most
powerful tools cryptographers have ever devised

—Matthew Green

quantum mechanics and information technology
are merging to create technologies that will
revolutionize and define the 21st century.

—QUANTUM: The Exhibition

Let’s combine them!
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Interactive proof systems

I A statement (x) is True iff x ∈ L for some fixed language L
I Example: L is the language of all pairs of graphs that are

isomorphic, x is the pair (G0,G1)

I Proving as an interactive procedure
I Prover (P) convinces Verifier (V ) of the truth of some

statement (x) by giving a proof/certificate/witness (w)

I (Optional) restrictions:
I Verifier is modelled by a Turing machine
I Verifier runs in polynomial time

I Size of the proof (|w |) is polynomial

I Verifier might only accept with probability ≥ 2/3

S. R. Verschoor Zero-Knowledge Against Quantum Attacks 2016–12–08 4 / 27

Zero-knowledge

I In general, a proof system is concerned about two things:
I Completeness: if both parties play honest, will V accept?
I Soundness: if P cheats, will V reject?

I Zero-knowledge handles the case in which the V cheats:
I Zero-knowledge: the protocol asserts nothing but x ∈ L
I Leakage includes:

I V cannot convince a third party of x ∈ L
I V cannot convince a third party of “P knows that x ∈ L”
I V cannot convince a third party that any conversation

between P and V took place at all

I How to prove “Zero-knowledgeness”?
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Zero-knowledge protocols

I An interactive protocol between P and V is zero-knowledge
on L if for all possible (cheating) verifiers (V ′):

ViewP,V ′ is approximable on L′ = {(x ,H)|x ∈ L ∧ |H| = |x |c}
I View is all V ′ sees

I Random bits
I Messages from P
I Additional helper data H

I A View is approximable if there exists an efficient Turing
machine S that creates a distribution that is indistinguishable
from the View.

I S is called the simulator
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Defining indistinguishability

I Families of random variables U : {U(x)} and V : {V (x)}
I If there is no judge J that can tell if the sample came from

U(x) or V (x), U and V are indistinguishable

I Types of indistinguishability:
I Perfect: J gets arbitrary many samples

I U = V

I Statistical: J gets only polynomial many samples
I Statistical difference between U and V is negligible

I Computational: J gets only polynomial many samples and
has only polynomial time to distinguish them

I U and V cannot be distinguished by an efficient algorithm
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Applications of zero-knowledge

I Online authentication scheme
I Client proves (in zero-knowledge) to a web-server that they

know the password
I (Note: this is not how the internet actually works: usually you

just send a plaintext password)

I
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Example: graph isomorphism

Common input x = (G0,G1):

G0 G1

To prove: G0 ' G1
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Example: graph isomorphism

Prover knows permutation σ such that σ(G1) = G0:

G0 = σ(G1)

σ←−

G1

σ can only exist if G0 ' G1

S. R. Verschoor Zero-Knowledge Against Quantum Attacks 2016–12–08 10 / 27

Example: graph isomorphism

Prover chooses random permutation π and computes H = π(G0):

G0 = σ(G1)

π−→

H = π(G0) = πσ(G1)

Prover sends H to Verifier
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Example: graph isomorphism

Verifier replies with random bit a: a challenge to show a
permutation from Ga to H.

G1

?−→

H

In this example: a = 1
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Example: graph isomorphism

Prover replies with the permutation τ = πσa

G1

τ−→

H

Q: Why not always challenge a = 1?
A: The Prover could cheat and send H = π(G1) in the first
message
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Example: graph isomorphism

Prover Verifier

random π

commit
H = π(G0)

random bit a

challenge
a

response
τ = πσa

accept iff τ(Ga) = H

I Repeat until V is satisfied
I To be a Zero-knowledge proof of G0 ' G1, we need to prove:

I Completeness: G0 ' G1 ⇒ Pr[accept] = 1
I Soundness: G0 6' G1 ⇒ Pr[reject] = 1/2
I Zero-knowledge: does a simulator exist?
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Example: graph isomorphism

I Q: Does a simulator exist?

I A: Sure, just take out your time machine!

I Define a simulator SV ′
that uses V ′ as a subroutine

1. Pick a random permutation τ and bit a′

2. Send H = τ(Ga′) to V ′

3. V ′ replies with a

4. if a′ = a: send τ
else: go back in time (rewind V ′) and try again!

I Efficient: expected to rewind once

I ViewP,V ′ = ViewSV ′ ,V ′
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Example: graph isomorphism

I It’s all software: we don’t need a physical time machine

I SV ′
sets up V ′ in a virtual machine

I Before every iteration of the protocol: take a snapshot

I if a′ = a: success
else: restart from the snapshot and try again

I What have we achieved?
I Any transcript that V ′ gives to J could have been created by

SV ′
, who does not have any knowledge

I So no transcript can leak any knowledge
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Quantum Attacks

What if cheating verifier V ′ has a quantum computer?

I V ′ could have auxiliary input entangled with qubits not
accessible to V ′ or SV ′

, but available to the judge
I Rewinding cannot be applied generally

I Quantum information cannot be copied
I Running V ′ might involve a irreversible measurement
I Determining if a simulation was succesful requires a

measurement
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Quantum Zero-Knowledge

I Need to refine our notion of indistinguishability

I Instead of the View, we take a look at possible quantum
channels that the cheating verifier can implement

I We use the Kitaev diamond norm distance between two
channels Φ0 and Φ1:

I 1
2‖Φ0 − Φ1‖�

I Describes the maximum bias with which a physical process can
distinguish them

I Covers distinguishing with entangled states
I This is analogous to the trace distance between quantum states
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Quantum rewinding lemma

We can’t rewind in general. But we can if:

I Given a circuit Q of the form:

I In general, this circuit implements:

Q |ψ〉 |0k〉 =
√

p(ψ) |0〉 |φ0(ψ)〉+
√

1− p(ψ) |1〉 |φ1(ψ)〉

I We can rewind if p = p(ψ) is constant (independent of ψ).

I Goal: to get |φ0(ψ)〉 with probability arbitrary close to 1
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Quantum rewinding lemma

I Getting |φ0(ψ)〉 from |ψ〉:
1. Apply Q
2. Repeat:
3. Measure first output register
4. If outcome is 1:
5. Apply Q−1

6. Apply U = 2 |0m〉〈0m| − 1 to ancilla
7. Apply Q
8. Output |φ〉

I After applying Q, we get in state

Q |ψ〉 |0k〉 =
√

p |0〉 |φ0(ψ)〉+
√

1− p |1〉 |φ1(ψ)〉
I If we measure 0, we are done! Else we apply

Q(I ⊗U)Q−1 |1〉 |φ(ψ)〉
= 2

√
p(1− p) |0〉 |φ0(ψ)〉+ (1− 2p) |1〉 |φ1(ψ)〉
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Example: graph isomorphism

A cheating verifier has the following interaction:

P0

V ′1

P1

V ′2

|ψ〉

π(G0)

π

ρ

a πσa

Where ρ = 1
n!

∑
π∈Sn

∑
a∈{0,1}

Mπ(G0),a
|ψ〉〈ψ|M∗π(G0),a

The channel Φ is then the tensor product of all registers in the view
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Example: graph isomorphism

We simulate this using the following Q:

|ψ〉
V ′1 •

T

Where T creates a uniform superposition:

1√
2n!

∑
τ∈Sn

∑
b∈{0,1}

|τ(Gb)〉 |b〉 |τ〉
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Example: graph isomorphism

I Works out to p = 1/2 with compatible states φ0 and φ1
I Applying the Quantum Rewinding lemma once to |1〉 |φ1(ψ)〉

2
√

p(1− p) |0〉 |φ0(ψ)〉+ (1− 2p) |1〉 |φ1(ψ)〉
= 2

√
1/4 |0〉 |φ0(ψ)〉+ 0 |1〉 |φ1(ψ)〉

= |0〉 |φ0(ψ)〉
I For graph isomorphism, we need to rewind (at most) once
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Generalizing the results

I Relax the assumption that p is independent of |ψ〉
I When p(ψ) varies only by an exponentially small amount, we

can still achieve statistical zero-knowledge

I The construction applies to all protocols of the form:
1. P sends a message to V

I Message could even be some quantum state

2. V flips a fair coin and sends the result to P
3. P responds with a second message

I Message could even be some quantum state

I All problems in HVQSZK can be expressed in this form
I HVQSZK = QSZK

I SZK ⊆ HVQSZK
I Not known: are all classical proofs in SZK secure against

quantum attacks?
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Generalizing the results

I Complexity class results
I QSZK is closed under complement
I The “close quantum states” problem is complete for QSZK
I QSZK ⊆ QIP(2)
I QSZKa,b = QSZK1,c with c polynomialy small
I Similar results for QZK and QPZK

I Non-interactive zero-knowledge proofs
I Quantum non-interactive zero-knowledge proofs
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Further reading

I Zero Knowledge Proofs: An illustrated primer – Matthew
Green (2007) [link]

I Zero-Knowledge Against Quantum Attacks – John Watrous
(2009) [link]

I Quantum Proofs – Thomas Vidick, John Watrous (2016) [link]

I Slides will be available at my website: [zeroknowledge.me]
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Thank you
Complexity classes

We can use the interactive games to define complexity classes
I NP: Non-deterministic Polynomial time

I L ∈ NP if a short proof exists for an efficient verifier
I Formally: there exist polynomials p, q and verifier V such that

∀x ∈ L : ∃w : |w | = q(|x |) ∧ V (x ,w) = 1
∀x 6∈ L : |w | = q(|x |) ⇒ V (x ,w) = 0
∀x ,w : V (x ,w) runs in time p(|x |)

I P: Polynomial time
I L ∈ P if an efficient verifier exists

I Formally: There exists a polynomial p and verifier V such that
∀x ∈ L : V (x , ∅) = 1
∀x 6∈ L : V (x , ∅) = 0
∀x : V (x , ∅) runs in time p(|x |)

I P ⊆ NP
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Complexity classes

I BPP: Bounded-error Probabilistic Polynomial time
I L ∈ BPP if an efficient probabilistic verifier exists
∀x ∈ L : Pr[V (x , ∅) = 1] ≥ 2/3
∀x 6∈ L : Pr[V (x , ∅) = 0] ≤ 1/3

I MA: Merlin-Arthur
I Arthur is a BPP verifier

I AM: Arthur-Merlin
I Arthur can send a message (challenge) to Merlin before Merlin

provides a proof

I IP: Interactive Proof systems
I Like AM, but allows many rounds interactions

I P ⊆ BPP ⊆MA ⊆ AM ⊆ IP
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Complexity class relations

QIP

IP=PSPACE

QAM

CZKQSZK AM

SZKNIQSZK QMA

NISZK PZK BQP MA

BPP NP

P
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https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
http://epubs.siam.org/doi/abs/10.1137/060670997
https://arxiv.org/abs/1610.01664
https://www.zeroknowledge.me/


Complexity class relations
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