In-band key-authentication from post-quantum key encapsulation mechanisms

Sebastian Verschoor

David R. Cheriton School of Computer Science University of Waterloo

September 9th, 2021

Outline

Key authentication
Usability
Socialist Millionaire Protocol

Post-quantum solution
Intuition
Oblivious transfer
Private equality confirmation

Proof of security
Simple Universal Composability
Post-quantum security

Implementation

Discussion

Key authentication

- Secure messaging
 - 1. Trust establishment
 - 1.1 key exchange
 - 1.2 key authentication
 - 2. Conversation security
 - 3. Transport privacy
- Key authentication prevents Person-in-the-Middle attacks (and other impersonation attacks)

Certificates

- TLS uses certificates.
- ▶ We want something without a trusted third party

Manual key fingerprint verification

ask them to scan your code.

Learn More

Mark as Verified

Manual key fingerprint verification (cont.)

Silke Verschoor @

√ Verified

Your safety number with Silke Verschoor · 06

23212 20924 03635 03660

58522 28262 56010 36639 77483 78332 85453 56535

If you wish to verify the security of your end-to-end encryption with Silke Verschoor · 06 compare the numbers above with the numbers on their device.

✓ You have verified your safety number with Silke Verschoor · 06

Mark as not verified

Key authentication: Usability

Usability issues lead to reduced security

studies where only 13% of users are able to successfully authenticate keys

Observed problems with manual fingerprint comparison:

- compare fingerprints in-band (note that the share button lets you do this)
- compare only in one direction
- toggle "Mark as Verified" without actually verifying

Observed user behaviour:

- allowing in-band authentication increases usability
- users naturally rely on shared information

Secret-based Zero-Knowledge verification

Secret-based Zero-Knowledge verification

Implemented in OTR [AG07]

Two interfaces

- Shared secret (mutual authentication)
- Question/Answer

Pro's:

- In-band
- User sees no technical details (keys/fingerprints)

Con's:

- "Shared secrets require existing social relationships. This limits the usability of a system" [Ung+15]
- Synchronous

No user study to confirming improved usability

Private Equality Test (PET)

- Alice and Bob share a (low-entropy) secret pwd
- ightharpoonup Alice and Bob have set up an OTR channel using pk_A and pk_B
- Alice computes $x = Hash(pk_A, pk_B, ssid, pwd)$
- ▶ Bob computes $y = Hash(pk_A, pk_B, ssid, pwd)$
- They run the SMP protocol over the OTR channel to compare if x = y in zero-knowledge
 - If $x \neq y$, Alice should not learn anything about y (similarly Bob should not learn anything about x)

Socialist Millionaire Protocol

- Diffie-Hellman based protocol (not quantum-safe)
 - Shared secrets vulnerable to harvest-and-decrypt
- No direct translation to post-quantum primitives
- Fairness abandoned in the OTR implementation
 - One user can abort after getting output

Post-quantum solution

Proposed solution: KOP

► A (KEM-based Oblivious Transfer)-based Private Equality Confirmation

- Alice writes down n random pairs $(A_1[0], A_1[1]), \dots, (A_n[0], A_n[1])$
- Alice computes $\alpha(x) = A_1[x_1] \oplus \cdots \oplus A_n[x_n]$
- Bob learns α(y) as follows. Per pair:
 Alice fills two envelopes, with A_i[0] and A_i[1]
 while Alice is not watching, Bob opens envelope A_i[y_i
 A_i[1 y_i] is destroyed
- Switch roles, so Alice learns $\beta(x)$
- ► They compare $\alpha(x) \oplus \beta(x)$ with $\alpha(y) \oplus \beta(y)$

- Alice writes down n random pairs $(A_1[0], A_1[1]), \ldots, (A_n[0], A_n[1])$
- ▶ Alice computes $\alpha(x) = A_1[x_1] \oplus \cdots \oplus A_n[x_n]$
- Bob learns α(y) as follows. Per pair:
 Alice fills two envelopes, with A_i[0] and A_i[1]
 while Alice is not watching, Bob opens envelope A_i[y_i
 A_i[1 y_i] is destroyed
- Switch roles, so Alice learns $\beta(x)$
- ► They compare $\alpha(x) \oplus \beta(x)$ with $\alpha(y) \oplus \beta(y)$

- Alice writes down n random pairs $(A_1[0], A_1[1]), \dots, (A_n[0], A_n[1])$
- ▶ Alice computes $\alpha(x) = A_1[x_1] \oplus \cdots \oplus A_n[x_n]$
- ▶ Bob learns $\alpha(y)$ as follows. Per pair:
 - Alice fills two envelopes, with $A_i[0]$ and $A_i[1]$
 - while Alice is not watching, Bob opens envelope $A_i[y_i]$
 - $A_i[1-y_i]$ is destroyed
- Switch roles, so Alice learns $\beta(x)$
- ► They compare $\alpha(x) \oplus \beta(x)$ with $\alpha(y) \oplus \beta(y)$

- Alice writes down n random pairs $(A_1[0], A_1[1]), \dots, (A_n[0], A_n[1])$
- ▶ Alice computes $\alpha(x) = A_1[x_1] \oplus \cdots \oplus A_n[x_n]$
- ▶ Bob learns $\alpha(y)$ as follows. Per pair:
 - Alice fills two envelopes, with $A_i[0]$ and $A_i[1]$
 - while Alice is not watching, Bob opens envelope $A_i[y_i]$
 - $A_i[1-y_i]$ is destroyed
- \triangleright Switch roles, so Alice learns $\beta(x)$
- ► They compare $\alpha(x) \oplus \beta(x)$ with $\alpha(y) \oplus \beta(y)$

- Alice writes down n random pairs $(A_1[0], A_1[1]), \dots, (A_n[0], A_n[1])$
- ▶ Alice computes $\alpha(x) = A_1[x_1] \oplus \cdots \oplus A_n[x_n]$
- ▶ Bob learns $\alpha(y)$ as follows. Per pair:
 - Alice fills two envelopes, with $A_i[0]$ and $A_i[1]$
 - while Alice is not watching, Bob opens envelope $A_i[y_i]$
 - $A_i[1-y_i]$ is destroyed
- \triangleright Switch roles, so Alice learns $\beta(x)$
- ► They compare $\alpha(x) \oplus \beta(x)$ with $\alpha(y) \oplus \beta(y)$

- Alice writes down n random pairs $(A_1[0], A_1[1]), \dots, (A_n[0], A_n[1])$
- ▶ Alice computes $\alpha(x) = A_1[x_1] \oplus \cdots \oplus A_n[x_n]$
- ▶ Bob learns $\alpha(y)$ as follows. Per pair:
 - Alice fills two envelopes, with $A_i[0]$ and $A_i[1]$
 - while Alice is not watching, Bob opens envelope $A_i[y_i]$
 - \triangleright $A_i[1-y_i]$ is destroyed
- \triangleright Switch roles, so Alice learns $\beta(x)$
- ► They compare $\alpha(x) \oplus \beta(x)$ with $\alpha(y) \oplus \beta(y)$

A solution using envelopes [FNW96] Binary inputs $x = x_1x_2...x_n$ (Alice) and $y = y_1y_2...y_n$ (Bob)

- Alice writes down n random pairs $(A_1[0], A_1[1]), \dots, (A_n[0], A_n[1])$
- ▶ Alice computes $\alpha(x) = A_1[x_1] \oplus \cdots \oplus A_n[x_n]$
- ▶ Bob learns $\alpha(y)$ as follows. Per pair:
 - Alice fills two envelopes, with $A_i[0]$ and $A_i[1]$
 - while Alice is not watching, Bob opens envelope $A_i[y_i]$
 - $\triangleright A_i[1-y_i]$ is destroyed
- ▶ Switch roles, so Alice learns $\beta(x)$
- ► They compare $\alpha(x) \oplus \beta(x)$ with $\alpha(y) \oplus \beta(y)$

- Alice writes down n random pairs $(A_1[0], A_1[1]), \ldots, (A_n[0], A_n[1])$
- ▶ Alice computes $\alpha(x) = A_1[x_1] \oplus \cdots \oplus A_n[x_n]$
- ▶ Bob learns $\alpha(y)$ as follows. Per pair:
 - Alice fills two envelopes, with $A_i[0]$ and $A_i[1]$
 - while Alice is not watching, Bob opens envelope $A_i[y_i]$
 - $\triangleright A_i[1-y_i]$ is destroyed
- \triangleright Switch roles, so Alice learns $\beta(x)$
- ► They compare $\alpha(x) \oplus \beta(x)$ with $\alpha(y) \oplus \beta(y)$

Oblivious transfer

Envelopes are realized by Oblivious Transfer (OT) Endemic 1-out-of-*m* OT (*m* envelopes)

- ▶ If both Sender and Receiver are honest:
 - Receiver input j
 - Let $s[1], \ldots, s[m]$ be random values
 - Receiver gets output s[j]
 - Sender gets output $s[1], \ldots, s[m]$
 - Malicious parties choose their own output
 - ▶ Malicious Sender sets s[1], ..., s[m]
 - Malicious Receiver sets s[j]

OT from KEMs

- Key encapsulation mechanism (KEM):
 - \triangleright $(pk, sk) \leftarrow KeyGen()$
 - $(k, ct) \leftarrow Encaps(pk)$
 - $ightharpoonup k \leftarrow Decaps(sk, ct)$
- ▶ Public keys need to form a group $(\mathcal{G}, +)$
- Decapsulation must not fail explicitly
 - Nor leak (implicit) failure through side-channel
- ightharpoonup m (local) random oracles $H_i: \mathcal{G}^{m-1} \to \mathcal{G}$

PQ KEMs have been under scrutiny by many cryptographers and can be instantiated as hybrid with pre-quantum primitives

OT from KEMs

OT construction from KEMs [MR21]

Output to both parties

The envelopes are only secure against semi-honest adversaries

- Simultaneous comparison (last step) is not possible
 - Bob can reflect Alice's last message to have her accept
 - Existing implementation [RR17]: only Bob gets output
- Use a cryptographic hash function G:
- ▶ Alice sends $G(\alpha(x)) \oplus \beta(x)$
- ▶ Bob rejects, or replies $\alpha(y) \oplus \beta(y)$

Output to both parties

Problem(?): Alice and/or Bob can send anything in the last message.

- A malicious party can force the other party to reject even when x = y
- ightharpoonup Bob can even do this after having learned whether x = y
- In the context of key authentication this does not matter
- I call the resulting functionality Private Equality Confirmation (PEC)

Output to both parties

Problem(?): Alice and/or Bob can send anything in the last message.

- A malicious party can force the other party to reject even when x = y
- ▶ Bob can even do this after having learned whether x = y
- In the context of key authentication this does not matter
- ▶ I call the resulting functionality Private Equality Confirmation (PEC)

Simple Universal Composability (SUC)

- Simulation paradigm (real/ideal)
- Environment Z
 - Wants to distinguish real model from ideal model
 - Chooses input and read outputs of parties P_i
 - Can corrupt parties
 - Interacts with the protocol (via the adversary interface)
- ► SUC-secure ⇔ UC-secure
 - But SUC is less expressive than UC

Real model (protocol π)

- \triangleright Parties P_i send messages
 - Authenticated
 - Non-confidential
 - Scheduled by A
- Environment Z controls input/output
- Corrupt parties reveal state
- A can send messages for maliciously corrupted parties

Ideal model (functionality \mathcal{F})

- ▶ Dummy parties P_i
 - Non-corrupted parties only forward input/output
 - Private messages
- Simulator S
 - Controls input/output of corrupted parties

Z output bit ${ ext{SUC-IDEAL}}_{\mathcal{F},\mathcal{S},\mathcal{Z}}(1^\lambda,z)$

SUC-security: For every adversary A there must be a S such that for all environments Z on any advice z:

$$igg| \mathsf{Pr}[\mathtt{SUC\text{-}REAL} = 1] - \mathsf{Pr}[\mathtt{SUC\text{-}IDEAL} = 1] igg| = \mathit{negl}(\lambda)$$

- Simulator S
 - ► Goal: generate identically distributed view for Z
 - S^A: defined relative to A
 - Z is external to S: no rewinding
 - ightharpoonup S has to extract the effective input of the corrupted party to ${\cal F}$
 - Can run code of honest parties itself
 - Can see output of corrupted parties
- Hard to prove anything in this plain model
 - ► Replace the real model with a hybrid model

Hybrid model: protocol π uses functionality \mathcal{F}'

- SUC composition theorem: if π SUC-secure computes $\mathcal F$ in the $\mathcal F'$ -hybrid model, and ρ SUC-secure computes $\mathcal F'$ in the $\mathcal F''$ -hybrid model, then π^ρ SUC-secure computes $\mathcal F$ in the $\mathcal F''$ -hybrid model
 - \blacktriangleright π^{ρ} : replace each invocation of \mathcal{F}' by executing ρ
- \triangleright S usually runs \mathcal{F}' in the simulation
 - Can see adversary input
 - Can choose output (distributed similarly)
- ► Rarely go all the way to real model
 - In this case: the random oracle model is the lowest hybrid

PEC functionality

PEC protocol

PEC protocol (simplified)

SUC security of PEC

Hybrid argument to prove indistinguishability

- Start with a simulator that simply runs the honest party's code
 - trivially identical view for Z
 - invalid: requires knowledge of y
 - ightharpoonup change it until it no longer requires y (but it will need \mathcal{F}_{pec})
 - show each change is indistinguishable
- Last hybrid is a valid simulator

SUC security of PEC (corrupt Alice)

SUC security of PEC (corrupt Bob)

SUC security of PEC (corrupt Bob)

Two computational assumptions (in case $x \neq y$)

- random m_A should be indistinguishable from $G(\alpha(x)) \oplus \beta(x)$
 - note that $\alpha(x)$ is uniformly random
 - so this reduces to "G is pseudorandom"
- ideal model always rejects when $x \neq y$, real model might accept
 - real Alice sends $m_A = G(\alpha(x)) \oplus \beta(x)$
 - real Alice accepts $m_B = \alpha(x) \oplus \beta(x)$
 - so this reduces to "G is one-way"

Post-quantum security

- Post-quantum security
 - Environment is a quantum machine (with quantum advice)
 - Assume a PQ-secure OT
 - Assume a PQ-secure G (PQ one-way, PQ pseudorandom)
- ► The security argument can be lifted to quantum security
 - No internal rewinding
 - Lifting does not necessarily preserve tightness
 - but the proof was asymptotic and non-uniform anyway

Implementation

libkop

- Hybrid KEM
 - Kyber (Round 3 CCA, NIST PQC Ivl 5)
 - ► ECDH (Ed448 Goldilocks, Decaf)
 - with implicit failure on parsing error
- ► C99 (~2000 LoC)
- Side channel protection
 - Constant time
 - No secret indices
- ► Domain separation ROMs

Performance

- 2-RTT protocol, 80-bit inputs (m = 4, n = 40)
 - Message size
 - ▶ 254 KiB
 - ▶ 508 KiB
 - 254 KiB
 - ▶ 32 B
 - ► Speed¹ (ms)
 - **2**2
 - **114**
 - **106**
 - **1**5

¹measured without TurboBoost

Key authentication from post-quantum KEMs (+ group structure)

Limitations

- OT security argument (despite claims) is not proven quantum-safe
 - any Post-Quantum UC-secure OT suffices
- Asymptotic, non-uniform proof
- Rather heavy machinery

Alternate solutions

- Use alternative key authentication ceremony
- Direct post-quantum replacement for SMP
- PAKE

Thank you

References

- [AG07] Chris Alexander and Ian Goldberg. "Improved User Authentication in Off-the-Record Messaging". In: Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society. WPES '07. Alexandria, Virginia, USA: Association for Computing Machinery, Oct. 2007, pp. 41–47. ISBN: 9781595938831. DOI: 10.1145/1314333.1314340.
- [FNW96] Ronald Fagin, Moni Naor, and Peter Winkler. "Comparing Information Without Leaking It". In: Communications of the ACM 39.5 (1996), pp. 77–85. DOI: 10.1145/229459.229469.
- [HSS11] Sean Hallgren, Adam Smith, and Fang Song. "Classical Cryptographic Protocols in a Quantum World". In: Advances in Cryptology CRYPTO 2011. Ed. by Phillip Rogaway. Berlin, Heidelberg: Springer, 2011, pp. 411–428. ISBN: 978-3-642-22792-9. DOI: 10.1007/978-3-642-22792-9_23.
- [MR21] Daniel Masny and Peter Rindal. Endemic Oblivious Transfer. July 2021. iacr: 2019/706.

References (cont.)

- [RR17] Peter Rindal and Mike Rosulek. "Malicious-Secure Private Set Intersection via Dual Execution". In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. Ed. by Bhavani M. Thuraisingham et al. ACM, 2017, pp. 1229–1242. DOI: 10.1145/3133956.3134044.
- [Ung+15] Nik Unger et al. "SoK: Secure Messaging". In: 2015 IEEE Symposium on Security and Privacy, SP 2015. IEEE Computer Society, 2015, pp. 232–249. DOI: 10.1109/SP.2015.22.

Socialist Millionaire Protocol

Quantum Lifting

- A simple hybrid argument [HSS11]: For every adjacent hybrid H_i , H_{i+1} :
 - ▶ there is a machine M and classical distributions D_i , D_{i+1}
 - ightharpoonup so that $M(D_i)=H_i$ and $M(D_{i+1})=H_{i+1}$
 - ightharpoonup and D_i is quantum indistinguishable from D_{i+1}