
Factoring semi-primes with (quantum) SAT solvers

Sebastian Verschoor
Joint work with Michele Mosca and João Marcos Vensi Basso

Institute for Quantum Computing
David R. Cheriton School of Computer Science

University of Waterloo

August 19th, 2020

Outline

Introduction
Motivation

Direct approach
Adiabatic factoring
SAT factoring

Speeding up the number field sieve
Brief overview of the NFS
Finding smooth numbers with Circuit-SAT

Conclusions/Future work

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 2 / 40

Motivation

I “Quantum factorization of 143”∗

I “That quantum computation, which used only 4 qubits [. . .]
actually also factored [. . .] 56153, without the awareness of
the authors”†

I 291311‡§

I 1099551473989 = 1048589 * 1048601¶

I Variational Quantum Factoring [Ans+18]
I Adiabatic Factoring
I Pretending to factor large numbers on a quantum computer‖

∗https://doi.org/10.1103/PhysRevLett.108.130501
†https://arxiv.org/abs/1411.6758
‡https://arxiv.org/abs/1706.08061
§https://en.wikipedia.org/wiki/Integer_factorization_records
¶https://bit.ly/3iQDhmT
‖https://arxiv.org/pdf/1301.7007.pdf

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 3 / 40

https://arxiv.org/abs/1411.6758
https://en.wikipedia.org/wiki/Integer_factorization_records
https://arxiv.org/pdf/1301.7007.pdf

Introduction: Quantum optimizers

Basic idea of adiabatic quantum computing (AQC):
I Initialize state according to ground state of HI (some “easy”

Hamiltonian)
I Let HP be the problem Hamiltonian where the ground-state

describes the goal state
I Slowly evolve HI to HP (so system stays in ground state)

I runtime bounded by T = O(1/g2
min)

I gmin is the spectral gap of H(t) = (1− t/T)HI + (t/T)HP

I Measure solution from endstate

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 4 / 40

Introduction: Quantum optimizers (cont.)

Interesting because:
I AQC is (polynomially) equivalent to the quantum gate

model [Aha+04]
I Quantum Annealing (QA): a noisy version of AQC
I Exists now: D-Wave
I We can use it to solve an NP-complete problem:

I quadratic unconstrained binary optimization (QUBO)
I thus we can solve any problem in NP
I but maybe not efficiently

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 5 / 40

Introduction: SAT

The Boolean satisfiabilty problem (SAT) is the canonical
NP-complete problem. Example:

(x1 ∨ ¬x2) ∧ (x3 ∨ (x4 ∧ x5))

is satisfied by x2 ← FALSE and x3 ← TRUE.
I NP-complete: polynomially equivalent to all NP-complete

problems
I No efficient algorithm for solving it
I Used a lot in practice to solve large NP-hard problems

I CNF-SAT, eg: (x1 ∨ ¬x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x5)

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 6 / 40

Introduction: Factoring

I Factoring is in NP ∩ coNP .
I Widely believed not to be NP-complete

I Shor’s quantum algorithm: polylog(N)

I Many classical sub-exponential algorithms
For real-world security: we care about real-world runtime.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 7 / 40

Introduction

The (Rivest-Shamir-Adleman) RSA cryptosystem is based on the
hardness of factoring large integers.
I Given N = pq, it is hard to find p and q

RSA challenge: published March 18, 1991
I RSA-100, 330 bits: factored April 1, 1991

I < 5 hours on a single core of my laptop

I RSA-250, 829 bits: factored February 28, 2020
I RSA-2048, unbroken

Use this as benchmark, but for much smaller numbers

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 8 / 40

Direct approach

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 9 / 40

Adiabatic factoring

N = 14310 = 100011112 = pq

I p1 + q1 = 1 + 2z12
I p1q1 + q2 + z12 = 1 + 2z23
I . . .

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 10 / 40

Adiabatic factoring (cont.)

Reduce to quadratic unconstrained binary optimization (QUBO):
I H1 = (p1 + q1 − 1− 2z12)2

I H2 = (p1q1 + q2 + z12 − 1− 2z23)2

I . . .

Remove high-order (> 2) terms using additional variables, eg:

I p1q1q2
t=p1q1−−−−→ tq2 + 2(p1q1 − 2p1t − 2q1t + 3t)

Optimize binary variables to minimize sum of squares:

min
∑
i

Hi = 0

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 11 / 40

Adiabatic factoring (cont.)

Encode each variable in a qubit of a quantum annealer.
Then the objective function describes HP , the problem Hamiltonian
Run the adiabatic algorithm.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 12 / 40

Adiabatic factoring (cont.)

I QUBO is NP-complete
I “Relative to a permutation oracle [. . .] the class NP cannot be

solved on a quantum Turing machine in time o(2n/2)”
[Ben+97]

I Evidence (no proof!) that the adiabatic algorithm cannot solve
QUBO efficiently.

I Maybe an annealer can achieve the full square-root speedup
I In practice asymptotics may not be meaningful. Look at

SAT-solvers: they solve NP-hard problems for sizes relevant in
the real world!

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 13 / 40

SAT factoring

Main idea:
I Measure performance of the best classical NP-complete

algorithms, ie. SAT solvers
I Assume we achieve the square-root speedup over the entire

computation (every clockcycle)
I Compare the performance against classical methods

I asymptotically
I for real-world instances

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 14 / 40

SAT factoring
Wires are Boolean variables; gates are clauses
Negation:

v ¬v

NAND:
x
y z

(x ∨ z) ∧ (y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

Half-adder:
x

y

s

c

(s ∨ x ∨ ¬y) ∧ (s ∨ ¬x ∨ y) ∧ (¬s ∨ x ∨ y) ∧ (¬s ∨ ¬x ∨ ¬y)

∧(c ∨ ¬x) ∧ (c ∨ ¬y) ∧ (¬c ∨ x ∨ y)

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 15 / 40

SAT factoring: bias

We skewed the methods to maximize classical performance.
Solver: MapleComSPS [Lia+16]:
I DPLL-based SAT solver

I Backtracking
I Unit propagation, pure literal elimination, clause learning

I Fastest solver in the 2016 SAT competition

Cryptominisat5
I slower

Local search algorithms like WalkSAT:
I Initialize variables random
I While ∃ UNSAT(clause): flip a variable in UNSAT(clause)
I Structurally closer to annealing
I Performs worse in practice.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 16 / 40

SAT factoring: bias (cont.)

Multiplication algorithm
I Schoolbook multiplication

I Asymptotically suboptimal
I Karatsuba

I Asymptotically faster
I SAT solver is slower in practice

I Others (assumed slower)

Certain semi-primes are easier to solve
I assume the solver is able to pick up on this
I also tried “factor any” circuit

I one multiplication circuit
I multiple possible outputs (combined in one large OR gate)
I runtime is worse

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 17 / 40

Results

MapleCOMSPS mean runtime

3 10 20 30 40 50
n: Semiprime length (bits)

10-3

10-2

10-1

100

101

102

103

104

T
(n
):

Ti
m

e
(s

ec
on

ds
)

20.495n− 16.4(r2 =0.995)

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 18 / 40

Results

MapleCOMSPS min runtime

3 5 10 15 20 25 30 35 40 45 50
n: Semiprime length (bits)

10-4

10-3

10-2

10-1

100

101

102

T
(n
):

Ti
m

e
(s

ec
on

ds
)

20.522n− 22.5(r2 =0.987)

20.217n− 14.7(r2 =0.846)

We could find no patterns in the “easy” primes

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 19 / 40

Results

Trial division

3 10 20 30 40 50 60 70 8083
n: Semiprime length (bits)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

T
(n
):

Ti
m

e
(s

ec
on

ds
)

20.496n− 28.8(r2 =1.00)

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 20 / 40

Results

Comparing the results

0 200 400 600 800 1000
n: semiprime length (bits)

10-10

101

1012

1023

1034

1045

1056

1067

1078

1089

10100

10111

10122

10133

10144

T
(n

):
tim

e
in
 se

co
nd

s

classical solver (expected runtime)
quantum solver (expected runtime)
classical solver ("easy" semi-primes)
quantum solver ("easy" semi-primes)
trial division
number field sieve

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 21 / 40

Direct approach

Things to look out for in the adiabatic factoring literature
I Not mentioning any asymptotics
I Not counting preprocessing in total runtime
I Showing only efficiency or effectiveness of preprocessing
I Extrapolating small-scale results as evidence of asymptotics

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 22 / 40

Speeding up the number field sieve

Soon to appear in Nature Scientific Reports

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 23 / 40

Basics of factoring

Fermat’s factorization method (ignoring trivial factors):

N = a2 − b2 = (a + b)(a− b) = pq

Congruence of squares is sufficient:

a2 ≡ b2 ⇒ (a + b)(a− b) ≡ 0 mod N

and q = gcd(a− b,N).
Try bi = a2i mod N for many ai , until you find {bj} ⊆ {bi} such
that

∏
bj = b2 (and

∏
a2j = a2) is a perfect square.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 24 / 40

Basics of factoring (cont.)

To find {bj}, factorize each bi =
∏

k p
ei,k
k into its prime factors:∏

j

bj =
∏
j ,k

p
ej,k
k =

∏
k

p
∑

j ej,k
k

which is a square if
∑

j ej ,k is even for all k .
Store the exponent vectors modulo 2, look for a linear dependency
(need k + o(1) vectors).
To keep k small, only consider y -smooth numbers (pk ≤ y for all
k), discard non-smooth numbers.
This also allows faster factoring of bi using trial division, the elliptic
curve method and/or sieving.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 25 / 40

Brief overview of the NFS∗∗

Write N in base m: N = md + cd−1m
d−1 + · · ·+ c1m + c0. Define

f = X d + cd−1X
d−1 + · · ·+ c1X + c0 ∈ Z[X]

with root α.
Search for S such that the following are squares:∏

(a,b)∈S

(a + bm) = X 2 ∈ Z

f ′(α)2
∏

(a,b)∈S

(a + bα) = β2 ∈ Z[α]

Let φ be the ring homomorphism
∑

i aiα
i 7→

∑
i aim

i , then we can
factor N as

gcd(φ(β)− f ′(m)X ,N)

∗∗following the description of [BBM17]
S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 26 / 40

Brief overview of the NFS

Find y -smooth numbers on the algebraic side using the norm map
g from Z[α] to Z:

g(a, b) = (−b)d f (−a/b)

Both the rational and algebraic side are smooth iff
F (a, b) = (a + bm)g(a, b) is smooth.

U = {(a, b) | a, b ∈ Z, |a| ≤ u, 0 < b ≤ u}

Search for (a, b) ∈ U such that F (a, b) is y -smooth.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 27 / 40

Brief overview of the NFS

(Conjectured) complexity

LN

[
1
3
,

3

√
64
9

+ o(1)

]

= exp

((
3

√
64
9

+ o(1)

)
(logN)1/3(log logN)2/3

)

This is approximately L1.923+o(1), where L = LN [1/3, 1]
Search U with Grover’s algorithm
I Use Shor’s algorithm as Grover oracle (mark smooth numbers)

I Runtime: L
3
√

8/3+o(1) ≈ L1.387 (for Shor: Lo(1))
I Qubit requirement: (logN)2/3+o(1) (for Shor: (logN)1+o(1))

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 28 / 40

Brief overview of the NFS

Tune the parameters so we can factor with overwhelming
probability. Let
I y ∈ Lβ+o(1)

I u ∈ Lε+o(1)

I d ∈ (δ + o(1))(logN)1/3(log logN)2/3

U has size u2+o(1) = L2ε+o(1).
By the Prime Number Theorem there are

π(y) ≈ y/ ln(y) = y1+o(1)

primes ≤ y . Assume numbers F (a, b) have the same probability of
being prime.
The search range needs to contain y1+o(1) = Lβ+o(1) y -smooth
F (a, b).

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 29 / 40

Brief overview of the NFS

Classically
I Searching L2ε+o(1) integers takes time L2ε+o(1)

I Linear algebra takes time L2β+o(1)

I Balance 2ε = 2β
I Optimize δ
I · · · ⇒ L1.923+o(1)

Quantumly
I Partition U in Lβ+o(1) parts of size L2ε−β+o(1).
I Search each with Grover in time Lε−β/2+o(1).
I Balance ε+ β/2 = 2β
I Optimize δ
I · · · ⇒ L1.387+o(1)

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 30 / 40

Finding smooth numbers with Circuit-SAT

Given a Boolean circuit with v input variables and g gates: find an
assignment to v such that the circuit outputs TRUE.
Bruteforce the solution:
I for all 2v possible inputs:
I “run the circuit” in time O(g)

Total runtime: O(2vg)

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 31 / 40

Finding smooth numbers with Circuit-SAT

Direct implementation of smoothness definition:

F (a, b) =

π(y)∏
i=1

peii

b
a F (a, b) =

Π

pe11 pe22 p
eπ(y)

π(y)
...

e1 e2 eπ(y)

with hardcoded primes.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 32 / 40

Finding smooth numbers with Circuit-SAT (cont.)

Size of (e1, . . . eπ(y)) is lower-bounded by
π(y) ∈ y1+o(1) = Lβ+o(1).
Solver-time will be exponential in Lβ+o(1).

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 33 / 40

Finding smooth numbers with Circuit-SAT

But maybe it works in practice?
Assume o(1) = 0 for circuit generation.

27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

N

100

102

104

106

108

1010

1012
so

lv
er

 ru
nt

im
e

(s
)

Runtime of solving the variable exponent circuit
2y

L1.387

L1.923

y(N) * time to solve one instance

However, F (a, b) > N for N < 2140

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 34 / 40

Finding smooth numbers with Circuit-SAT

Allow non-prime factors q ≤ y :

b
a F (a, b) =

Π

...q1 q2 qn

Require all qi ≤ y via input encoding.
Note: log F (a, b) = log(N)2/3, thus runtime LN [2/3, ·]

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 35 / 40

Finding smooth numbers with Circuit-SAT

Preferable: no input besides (a, b)
Idea: Derandomize Lenstra’s elliptic curve method for factorization
(ECM) by fixing randomness at time of circuit generation:
ECM:
1. While N < y :
2. p ← ECM(N)

3. While p|N:
4. N ← N/p

b
a F (a, b) / ... /

ECM

RAND

/ ... /

ECM

RAND

... = 1?

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 36 / 40

Finding smooth numbers with Circuit-SAT (cont.)

Step 2 finds a non-trivial factor with probability Ω(1− 1/e) over
the random choice of the elliptic curve.
Runtime is dominated by runtime of a single ECM iteration

K (p) ∈ Lp[1/2,
√
2 + o(1)]

Since p ≤ y ∈ LN [1/3, ·], we get a circuit of size LN [1/6, ·].
Repeat this polylog(N) times until you factor with probability
1− o(1).
Input-space 2v ∈ LN [1/3, 2ε− β + o(1)]
Circuit size g ∈ LN [1/6, ·]
Assuming a quadratic speedup, we have quantum runtime
LN [1/3, ε− β/2 + o(1)]

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 37 / 40

Problem

The quadratic speedup over our bruteforce Circuit-SAT solver
suffices: O(

√
2vg)

However, when we say Circuit-SAT is NP-complete, we measure
complexity in g

I Best theoretical runtime: O(20.4058g)

I The standard translations to SAT/QUBO are polynomial in g

I So we expect a solver runtime exponentional in g : 2LN [1/6,·]

I To beat the NFS this solver requires a superpolynomial
speedup.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 38 / 40

Conclusions/Future work

A quadratic speedup in SAT-solving is (still) insufficient to speed
up factoring.
I would like to try SMT solvers, although I expect similar results.
Open question: how to implement this on a quantum annealer?
I A polylog(y) sized circuit for smoothness testing?
I Translate the bruteforce strategy to QUBO?

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 39 / 40

Thank you

References

[Aha+04] Dorit Aharonov et al. “Adiabatic Quantum Computation is Equivalent to
Standard Quantum Computation”. In: 45th Annual IEEE Symposium on
Foundations of Computer Science. Rome, Italy: IEEE Computer Society,
Oct. 2004, pp. 42–51. DOI: 10.1109/FOCS.2004.8.

[Ans+18] Eric R. Anschuetz et al. “Variational Quantum Factoring”. In: CoRR
abs/1808.08927 (2018). URL: https://arxiv.org/abs/1808.08927.

[BBM17] Daniel J. Bernstein, Jean-François Biasse, and Michele Mosca. “A
Low-Resource Quantum Factoring Algorithm”. In: Post-Quantum
Cryptography. Ed. by Tanja Lange and Tsuyoshi Takagi. Cham: Springer
International Publishing, 2017, pp. 330–346. ISBN: 978-3-319-59879-6.
DOI: 10.1007/978-3-319-59879-6_19.

[Ben+97] Charles H. Bennett et al. “Strengths and Weaknesses of Quantum
Computing”. In: SIAM Journal on Computing 26.5 (1997),
pp. 1510–1523. DOI: 10.1137/S0097539796300933.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 41 / 40

https://doi.org/10.1109/FOCS.2004.8
https://arxiv.org/abs/1808.08927
https://doi.org/10.1007/978-3-319-59879-6_19
https://doi.org/10.1137/S0097539796300933

References (cont.)

[Lia+16] Jia Hui Liang et al. “Learning Rate Based Branching Heuristic for SAT
Solvers”. In: Theory and Applications of Satisfiability Testing – SAT 2016:
19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings. Ed. by Nadia Creignou and Daniel Le Berre. Cham: Springer
International Publishing, 2016, pp. 123–140. ISBN: 978-3-319-40970-2.
DOI: 10.1007/978-3-319-40970-2_9.

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 42 / 40

https://doi.org/10.1007/978-3-319-40970-2_9

SAT: bits

A bit is either a value (True/False) or a SAT-variable:

data Bi t = Val { ge tVa l : : Bool}
| Var { getVar : : In t }

This allows:
I Rapid prototyping

I Mixed input (number padding)

I Proving gate correctness (exhaustive testing)
I Randomized testing of arbitrary sized gates

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 43 / 40

SAT: gates

neg : : B i t −> Bi t
neg (Val b) = Val (not b)
neg (Var v) = Var (−v)

nandGate : : B i t −> Bi t −> SymEval B i t
nandGate x y = do

z <− nextVar
addC lause s [[x , z]

, [y , z]
, [neg x , neg y , neg z]]

return z

ha l fAdd : : B i t −> Bi t −> SymEval (Bit , B i t)
ha l fAdd x y = do

s <− xorGate x y
c <− andGate x y
return (s , c)

f u l l A dd x y c i = do
(s1 , c1) <− ha l fAdd x y
(so , c2) <− ha l fAdd s1 c i
co <− orGate c1 c2
return (so , co)

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 44 / 40

Finding smooth numbers with Circuit-SAT: gates

Full adder:

HA
x

y

HA
ci

s1 c2

c1

so

co

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 45 / 40

Finding smooth numbers with Circuit-SAT: gates

Optimize gates beyond 3-SAT

f u l l A dd x y c i = do
so <− nextVar
addC lause s [[neg x , neg y , neg c i , so]

, [neg x , neg y , c i , neg so]
, [neg x , y , neg c i , neg so]
, [neg x , y , c i , so]
, [x , neg y , neg c i , neg so]
, [x , neg y , c i , so]
, [x , y , neg c i , so]
, [x , y , c i , neg so]]

co <− nextVar
addC lause s [[neg x , neg y , co]

, [neg x , neg c i , co]
, [x , y , neg co]
, [x , c i , neg co]
, [neg y , neg c i , co]
, [y , c i , neg co]]

re tu rn (so , co)

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 46 / 40

	Introduction
	Motivation

	Direct approach
	Adiabatic factoring
	SAT factoring

	Speeding up the number field sieve
	Brief overview of the NFS
	Finding smooth numbers with Circuit-SAT

	Conclusions/Future work
	Appendix
	References

