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Motivation

I “Quantum factorization of 143”∗

I “That quantum computation, which used only 4 qubits [. . . ]
actually also factored [. . . ] 56153, without the awareness of
the authors”†

I 291311‡§

I 1099551473989 = 1048589 * 1048601¶

I Variational Quantum Factoring [Ans+18]
I Adiabatic Factoring
I Pretending to factor large numbers on a quantum computer‖

∗https://doi.org/10.1103/PhysRevLett.108.130501
†https://arxiv.org/abs/1411.6758
‡https://arxiv.org/abs/1706.08061
§https://en.wikipedia.org/wiki/Integer_factorization_records
¶https://bit.ly/3iQDhmT
‖https://arxiv.org/pdf/1301.7007.pdf
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Introduction: Quantum optimizers

Basic idea of adiabatic quantum computing (AQC):
I Initialize state according to ground state of HI (some “easy”

Hamiltonian)
I Let HP be the problem Hamiltonian where the ground-state

describes the goal state
I Slowly evolve HI to HP (so system stays in ground state)

I runtime bounded by T = O(1/g2
min)

I gmin is the spectral gap of H(t) = (1− t/T )HI + (t/T )HP

I Measure solution from endstate
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Introduction: Quantum optimizers (cont.)

Interesting because:
I AQC is (polynomially) equivalent to the quantum gate

model [Aha+04]
I Quantum Annealing (QA): a noisy version of AQC
I Exists now: D-Wave
I We can use it to solve an NP-complete problem:

I quadratic unconstrained binary optimization (QUBO)
I thus we can solve any problem in NP
I but maybe not efficiently
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Introduction: SAT

The Boolean satisfiabilty problem (SAT) is the canonical
NP-complete problem. Example:

(x1 ∨ ¬x2) ∧ (x3 ∨ (x4 ∧ x5))

is satisfied by x2 ← FALSE and x3 ← TRUE.
I NP-complete: polynomially equivalent to all NP-complete

problems
I No efficient algorithm for solving it
I Used a lot in practice to solve large NP-hard problems

I CNF-SAT, eg: (x1 ∨ ¬x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x5)
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Introduction: Factoring

I Factoring is in NP ∩ coNP .
I Widely believed not to be NP-complete

I Shor’s quantum algorithm: polylog(N)

I Many classical sub-exponential algorithms
For real-world security: we care about real-world runtime.
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Introduction

The (Rivest-Shamir-Adleman) RSA cryptosystem is based on the
hardness of factoring large integers.
I Given N = pq, it is hard to find p and q

RSA challenge: published March 18, 1991
I RSA-100, 330 bits: factored April 1, 1991

I < 5 hours on a single core of my laptop

I RSA-250, 829 bits: factored February 28, 2020
I RSA-2048, unbroken

Use this as benchmark, but for much smaller numbers
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Direct approach
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Adiabatic factoring

N = 14310 = 100011112 = pq

I p1 + q1 = 1 + 2z12
I p1q1 + q2 + z12 = 1 + 2z23
I . . .
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Adiabatic factoring (cont.)

Reduce to quadratic unconstrained binary optimization (QUBO):
I H1 = (p1 + q1 − 1− 2z12)2

I H2 = (p1q1 + q2 + z12 − 1− 2z23)2

I . . .

Remove high-order (> 2) terms using additional variables, eg:

I p1q1q2
t=p1q1−−−−→ tq2 + 2(p1q1 − 2p1t − 2q1t + 3t)

Optimize binary variables to minimize sum of squares:

min
∑
i

Hi = 0
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Adiabatic factoring (cont.)

Encode each variable in a qubit of a quantum annealer.
Then the objective function describes HP , the problem Hamiltonian
Run the adiabatic algorithm.
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Adiabatic factoring (cont.)

I QUBO is NP-complete
I “Relative to a permutation oracle [. . . ] the class NP cannot be

solved on a quantum Turing machine in time o(2n/2)”
[Ben+97]

I Evidence (no proof!) that the adiabatic algorithm cannot solve
QUBO efficiently.

I Maybe an annealer can achieve the full square-root speedup
I In practice asymptotics may not be meaningful. Look at

SAT-solvers: they solve NP-hard problems for sizes relevant in
the real world!
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SAT factoring

Main idea:
I Measure performance of the best classical NP-complete

algorithms, ie. SAT solvers
I Assume we achieve the square-root speedup over the entire

computation (every clockcycle)
I Compare the performance against classical methods

I asymptotically
I for real-world instances
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SAT factoring
Wires are Boolean variables; gates are clauses
Negation:

v ¬v

NAND:
x
y z

(x ∨ z) ∧ (y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

Half-adder:
x

y

s

c

(s ∨ x ∨ ¬y) ∧ (s ∨ ¬x ∨ y) ∧ (¬s ∨ x ∨ y) ∧ (¬s ∨ ¬x ∨ ¬y)

∧(c ∨ ¬x) ∧ (c ∨ ¬y) ∧ (¬c ∨ x ∨ y)
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SAT factoring: bias

We skewed the methods to maximize classical performance.
Solver: MapleComSPS [Lia+16]:
I DPLL-based SAT solver

I Backtracking
I Unit propagation, pure literal elimination, clause learning

I Fastest solver in the 2016 SAT competition

Cryptominisat5
I slower

Local search algorithms like WalkSAT:
I Initialize variables random
I While ∃ UNSAT(clause): flip a variable in UNSAT(clause)
I Structurally closer to annealing
I Performs worse in practice.
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SAT factoring: bias (cont.)

Multiplication algorithm
I Schoolbook multiplication

I Asymptotically suboptimal
I Karatsuba

I Asymptotically faster
I SAT solver is slower in practice

I Others (assumed slower)

Certain semi-primes are easier to solve
I assume the solver is able to pick up on this
I also tried “factor any” circuit

I one multiplication circuit
I multiple possible outputs (combined in one large OR gate)
I runtime is worse
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Results

MapleCOMSPS mean runtime
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20.495n− 16.4(r2 =0.995)
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Results

MapleCOMSPS min runtime
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20.522n− 22.5(r2 =0.987)

20.217n− 14.7(r2 =0.846)

We could find no patterns in the “easy” primes
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Results

Trial division

3 10 20 30 40 50 60 70 8083
n: Semiprime length (bits)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

T
(n
): 

Ti
m

e 
(s

ec
on

ds
)

20.496n− 28.8(r2 =1.00)
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Results

Comparing the results
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Direct approach

Things to look out for in the adiabatic factoring literature
I Not mentioning any asymptotics
I Not counting preprocessing in total runtime
I Showing only efficiency or effectiveness of preprocessing
I Extrapolating small-scale results as evidence of asymptotics
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Speeding up the number field sieve

Soon to appear in Nature Scientific Reports
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Basics of factoring

Fermat’s factorization method (ignoring trivial factors):

N = a2 − b2 = (a + b)(a− b) = pq

Congruence of squares is sufficient:

a2 ≡ b2 ⇒ (a + b)(a− b) ≡ 0 mod N

and q = gcd(a− b,N).
Try bi = a2i mod N for many ai , until you find {bj} ⊆ {bi} such
that

∏
bj = b2 (and

∏
a2j = a2) is a perfect square.
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Basics of factoring (cont.)

To find {bj}, factorize each bi =
∏

k p
ei,k
k into its prime factors:∏

j

bj =
∏
j ,k

p
ej,k
k =

∏
k

p
∑

j ej,k
k

which is a square if
∑

j ej ,k is even for all k .
Store the exponent vectors modulo 2, look for a linear dependency
(need k + o(1) vectors).
To keep k small, only consider y -smooth numbers (pk ≤ y for all
k), discard non-smooth numbers.
This also allows faster factoring of bi using trial division, the elliptic
curve method and/or sieving.
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Brief overview of the NFS∗∗

Write N in base m: N = md + cd−1m
d−1 + · · ·+ c1m + c0. Define

f = X d + cd−1X
d−1 + · · ·+ c1X + c0 ∈ Z[X ]

with root α.
Search for S such that the following are squares:∏

(a,b)∈S

(a + bm) = X 2 ∈ Z

f ′(α)2
∏

(a,b)∈S

(a + bα) = β2 ∈ Z[α]

Let φ be the ring homomorphism
∑

i aiα
i 7→

∑
i aim

i , then we can
factor N as

gcd(φ(β)− f ′(m)X ,N)

∗∗following the description of [BBM17]
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Brief overview of the NFS

Find y -smooth numbers on the algebraic side using the norm map
g from Z[α] to Z:

g(a, b) = (−b)d f (−a/b)

Both the rational and algebraic side are smooth iff
F (a, b) = (a + bm)g(a, b) is smooth.

U = {(a, b) | a, b ∈ Z, |a| ≤ u, 0 < b ≤ u}

Search for (a, b) ∈ U such that F (a, b) is y -smooth.
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Brief overview of the NFS

(Conjectured) complexity

LN

[
1
3
,

3

√
64
9

+ o(1)

]

= exp

((
3

√
64
9

+ o(1)

)
(logN)1/3(log logN)2/3

)

This is approximately L1.923+o(1), where L = LN [1/3, 1]
Search U with Grover’s algorithm
I Use Shor’s algorithm as Grover oracle (mark smooth numbers)

I Runtime: L
3
√

8/3+o(1) ≈ L1.387 (for Shor: Lo(1))
I Qubit requirement: (logN)2/3+o(1) (for Shor: (logN)1+o(1))
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Brief overview of the NFS

Tune the parameters so we can factor with overwhelming
probability. Let
I y ∈ Lβ+o(1)

I u ∈ Lε+o(1)

I d ∈ (δ + o(1))(logN)1/3(log logN)2/3

U has size u2+o(1) = L2ε+o(1).
By the Prime Number Theorem there are

π(y) ≈ y/ ln(y) = y1+o(1)

primes ≤ y . Assume numbers F (a, b) have the same probability of
being prime.
The search range needs to contain y1+o(1) = Lβ+o(1) y -smooth
F (a, b).
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Brief overview of the NFS

Classically
I Searching L2ε+o(1) integers takes time L2ε+o(1)

I Linear algebra takes time L2β+o(1)

I Balance 2ε = 2β
I Optimize δ
I · · · ⇒ L1.923+o(1)

Quantumly
I Partition U in Lβ+o(1) parts of size L2ε−β+o(1).
I Search each with Grover in time Lε−β/2+o(1).
I Balance ε+ β/2 = 2β
I Optimize δ
I · · · ⇒ L1.387+o(1)
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Finding smooth numbers with Circuit-SAT

Given a Boolean circuit with v input variables and g gates: find an
assignment to v such that the circuit outputs TRUE.
Bruteforce the solution:
I for all 2v possible inputs:
I “run the circuit” in time O(g)

Total runtime: O(2vg)

S. R. Verschoor Factoring with (quantum) SAT solvers 2020–08–19 31 / 40



Finding smooth numbers with Circuit-SAT

Direct implementation of smoothness definition:

F (a, b) =

π(y)∏
i=1

peii

b
a F (a, b) =

Π

pe11 pe22 p
eπ(y)

π(y)
...

e1 e2 eπ(y)

with hardcoded primes.
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Finding smooth numbers with Circuit-SAT (cont.)

Size of (e1, . . . eπ(y)) is lower-bounded by
π(y) ∈ y1+o(1) = Lβ+o(1).
Solver-time will be exponential in Lβ+o(1).
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Finding smooth numbers with Circuit-SAT

But maybe it works in practice?
Assume o(1) = 0 for circuit generation.

27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

N

100

102

104

106

108

1010

1012
so

lv
er

 ru
nt

im
e 

(s
)

Runtime of solving the variable exponent circuit
2y

L1.387

L1.923

y(N) * time to solve one instance

However, F (a, b) > N for N < 2140
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Finding smooth numbers with Circuit-SAT

Allow non-prime factors q ≤ y :

b
a F (a, b) =

Π

...q1 q2 qn

Require all qi ≤ y via input encoding.
Note: log F (a, b) = log(N)2/3, thus runtime LN [2/3, ·]
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Finding smooth numbers with Circuit-SAT

Preferable: no input besides (a, b)
Idea: Derandomize Lenstra’s elliptic curve method for factorization
(ECM) by fixing randomness at time of circuit generation:
ECM:
1. While N < y :
2. p ← ECM(N)

3. While p|N:
4. N ← N/p

b
a F (a, b) / ... /

ECM

RAND

/ ... /

ECM

RAND

... = 1?
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Finding smooth numbers with Circuit-SAT (cont.)

Step 2 finds a non-trivial factor with probability Ω(1− 1/e) over
the random choice of the elliptic curve.
Runtime is dominated by runtime of a single ECM iteration

K (p) ∈ Lp[1/2,
√
2 + o(1)]

Since p ≤ y ∈ LN [1/3, ·], we get a circuit of size LN [1/6, ·].
Repeat this polylog(N) times until you factor with probability
1− o(1).
Input-space 2v ∈ LN [1/3, 2ε− β + o(1)]
Circuit size g ∈ LN [1/6, ·]
Assuming a quadratic speedup, we have quantum runtime
LN [1/3, ε− β/2 + o(1)]
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Problem

The quadratic speedup over our bruteforce Circuit-SAT solver
suffices: O(

√
2vg)

However, when we say Circuit-SAT is NP-complete, we measure
complexity in g

I Best theoretical runtime: O(20.4058g )

I The standard translations to SAT/QUBO are polynomial in g

I So we expect a solver runtime exponentional in g : 2LN [1/6,·]

I To beat the NFS this solver requires a superpolynomial
speedup.
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Conclusions/Future work

A quadratic speedup in SAT-solving is (still) insufficient to speed
up factoring.
I would like to try SMT solvers, although I expect similar results.
Open question: how to implement this on a quantum annealer?
I A polylog(y) sized circuit for smoothness testing?
I Translate the bruteforce strategy to QUBO?
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Thank you
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SAT: bits

A bit is either a value (True/False) or a SAT-variable:

data Bi t = Val { ge tVa l : : Bool}
| Var { getVar : : In t }

This allows:
I Rapid prototyping

I Mixed input (number padding)

I Proving gate correctness (exhaustive testing)
I Randomized testing of arbitrary sized gates
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SAT: gates

neg : : B i t −> Bi t
neg ( Val b ) = Val ( not b )
neg ( Var v ) = Var (−v )

nandGate : : B i t −> Bi t −> SymEval B i t
nandGate x y = do

z <− nextVar
addC lause s [ [ x , z ]

, [ y , z ]
, [ neg x , neg y , neg z ] ]

return z

ha l fAdd : : B i t −> Bi t −> SymEval ( Bit , B i t )
ha l fAdd x y = do

s <− xorGate x y
c <− andGate x y
return ( s , c )

f u l l A dd x y c i = do
( s1 , c1 ) <− ha l fAdd x y
( so , c2 ) <− ha l fAdd s1 c i
co <− orGate c1 c2
return ( so , co )
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Finding smooth numbers with Circuit-SAT: gates

Full adder:

HA
x

y

HA
ci

s1 c2

c1

so

co
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Finding smooth numbers with Circuit-SAT: gates

Optimize gates beyond 3-SAT

f u l l A dd x y c i = do
so <− nextVar
addC lause s [ [ neg x , neg y , neg c i , so ]

, [ neg x , neg y , c i , neg so ]
, [ neg x , y , neg c i , neg so ]
, [ neg x , y , c i , so ]
, [ x , neg y , neg c i , neg so ]
, [ x , neg y , c i , so ]
, [ x , y , neg c i , so ]
, [ x , y , c i , neg so ] ]

co <− nextVar
addC lause s [ [ neg x , neg y , co ]

, [ neg x , neg c i , co ]
, [ x , y , neg co ]
, [ x , c i , neg co ]
, [ neg y , neg c i , co ]
, [ y , c i , neg co ] ]

re tu rn ( so , co )
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