Quantum Information in Security Protocols

4-5

Sebastian Verschoor

David R. Cheriton School of Computer Science University of Waterloo

September 20th, 2021

Committee:

- Harry Buhrman
- Ian Goldberg
- Douglas Stebila
- John Watrous

Supervisor:

Michele Mosca

- Information security is the goal
- Cryptography captures part of that goal formally
 - Operates in a security model
 - A mathematical abstraction of the real world
 - Inductive reasoning tests validity of the model
 - Operates under assumptions (many implicit)
- Many breaches of security occur by bypassing the model

Quantum information

- Constructive: No-cloning theorem
 - Quantum key distribution (QKD)
- Destructive: Faster cryptanalysis
 - Shor's algorithm
 - Grover's algorithm

Quantum Information is notorious for being unintuitive, increasing the reliance on mathematics for assessing security.

Information security in the context of quantum information has a strong dependency on mathematical definitions of security, yet sound engineering practices remain unavoidable in order to construct meaningfully secure cryptographic protocols.

- 1. Preventing key exhaustion in QKD
- 2. Terrorist fraud on quantum distance bounding
- 3. Key authentication from post-quantum KEMs

1. Preventing key exhaustion in QKD

Key exhaustion in QKD

- Classical post-processing of quantum communication
 - output is either an ITS key or abort
- Authenticated channels are realized by ITS MACs
 - > a MAC tag is a universal hash + **one-time** pad
 - part of the shared key must be discarded
- Consumed key is replaced with fresh QKD output
 - but what if QKD aborts?

- Key exhaustion is achieved by
 - Noise on quantum channel
 - Tampering with post-processing
- Impact is more severe than common Denial-of-Service
 - abort all communication; or
 - recover (lowering security of future sessions)
- Applies to almost all practically deployed systems¹

¹at least the ones that are specified in sufficient detail

Solution:

- Computational authentication of each message
- ITS authentication of the transcript
 - resulting QKD output is ITS confidential and authenticated
- Simple implementation leads to desynchronization
- I propose two solutions for preventing desynchronization

1. Decoy-based solution

Hide when the real ITS authentication is being done

- > N shared keys, of which ℓ may already be consumed
- shared QKD output is already computationally authenticated
- sample number of decoy rounds (d) from ℓ bits of QKD output
- first send d decoy tags (with comp. auth.)
- then send the two real ITS tags (with comp. auth.)

Adversary consumes one or two keys by blocking a real tag

- block early tag: probably no key was consumed
- block late tag: probably real tag was missed
- block last tag is "optimal"

 Exponentially many sessions must be attacked until all keys are exhausted

- 2. Ratchet-based solution
 - MAC key is only exhausted once the MAC tag is sent
 - not when the tag is computed

- 2. Terrorist fraud in quantum distance bounding
 - Many scenario's require authenticity of identity and location
 - Secure building access
 - Keyless car entry
 - Contactless payments
 - Solution: distance bounding protocols
 - Much DB literature is in an informal framework

I demonstrate attacks on all (three) existing quantum distance bounding protocols

Timed challenge-response protocol

generate ephemeral key from shared long-term key k

keyed hash function over public nonces

- many single bit challenges (c_i) and responses (r_i)
- time-of-flight gives upper bound on distance
- (sometimes) concluded by a verification phase

Prover can assist the accomplice to fool the verifier
but cannot give long-term key k to the accomplice
Classical countermeasure: two ephemeral keys
d = g_k(N_v, N_p)

$$b = \text{Encrypt}_d(k)$$

correct responses depend on both d and b

- Three QDB protocols exist
- Send qubits instead of bits in the rapid phase
 - challenge $|\phi_i\rangle$
 - response $|\psi_i\rangle$
- For all three protocols I show that
 - ▶ TF countermeasure with $b = d \oplus k$: leaks the key k
 - ▶ TF countermeasure with $b = AES_d(k)$: does not prevent TF
 - no TF countermeasure: existing analysis is flawed

► The AMSP protocol [Abi+17]

- first half: $|\phi_i\rangle = |\psi_i\rangle = H^{d_i} |c_i\rangle$
- ▶ second half: $|\phi_{i+n}\rangle = |\psi_{i+n}\rangle = H^{b_i} |c_{i+n}\rangle$
- prover concludes by sending $MAC_k(c)$
 - prevents simple reflection

Extracting k from the prover (when $b = d \oplus k$)

• send $|\phi_i\rangle = |0\rangle$

• let x be the measurement outcome of $|\psi_i\rangle$

• if $x \neq 0$, then $d_i = 1$

b if both d_i and b_i leak in this manner, then k_i leaks

- otherwise you have still gained partial information about k_i
 - use that to attack subsequent rounds more effectively
 - attacking 16 rounds extracts a full 128-bit key

- 3. Key authentication from PQ KEMs
 - Secure messaging
 - Success (also) depends on usability and adoptability of solutions
 - Reduced usability leads to lower security

Secure messaging

- Initial key exchange between public keys
- Key authentication "binds" those keys to the intended users
- Many existing solutions
 - Manual fingerprint verification: usability problems
 - Secret-based zero-knowledge verification
 - in-band, intuitive
 - Socialist Millionaire Protocol [BST01]
 - implemented in Off-the-Record [AG07]
 - based on Diffie-Hellman: not post-quantum
- I give a post-quantum replacement for the SMP in the context of key authentication

- Alice and Bob share a (low-entropy) secret pwd
- Alice and Bob have set up an OTR channel using pk_A and pk_B
- Alice computes input x = Hash(pk_A, pk_B, ssid, pwd)
- Bob computes input y = Hash(pk_A, pk_B, ssid, pwd)
- The run the protocol to check if x = y in zero-knowledge
 - but malicious parties are allow to slightly alter the functionality

Protocol

SUC-secure in the OT-hybrid model

- \blacktriangleright \Rightarrow UC-secure in the ROM
- ► *G* should be pseudorandom and one-way
- Security argument follows the structure of a simple hybrid argument
 - \blacktriangleright \Rightarrow can be lifted to post-quantum security
 - OT must be UC post-quantum secure
 - G must be PQ pseudorandom and PQ one-way

2-RTT protocol

- Hybrid KEM
 - Kyber (Round3 CCA, NIST PQC lvl 5)
 - ECDH (Ed448 Goldilocks, Decaf)
- ▶ C99 (~2000 LoC)
- Side-channel protection
- Benchmarks (80-bit inputs)
 - Message size
 - 254 KiB, 508 KiB, 254 KiB, 32 B
 - Speed
 - 22 ms, 114 ms, 106 ms, 15 ms

- A formal approach to cryptography is fundamental for security
- Sound engineering is required to narrow the gap between theory and practice
- Quantum information impacts both of these aspects of security
- I have demonstrated
 - 1. How to authenticate post-processing in QKD
 - 2. How informal classical arguments are inadequate for quantum security (in distance bounding)
 - 3. How to build in-band PQ key authentication

Thank you

[Abi+17] Aysajan Abidin et al. "Towards Quantum Distance Bounding Protocols". In: Radio Frequency Identification and IoT Security 2016. Ed. by Gerhard P. Hancke and Konstantinos Markantonakis. Cham: Springer International Publishing, 2017, pp. 151–162. ISBN: 978-3-319-62024-4. DOI: 10.1007/978-3-319-62024-4_11.

- [AG07] Chris Alexander and Ian Goldberg. "Improved User Authentication in Off-the-Record Messaging". In: Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society. WPES '07. Alexandria, Virginia, USA: Association for Computing Machinery, Oct. 2007, pp. 41–47. ISBN: 9781595938831. DOI: 10.1145/1314333.1314340.
- [BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traoré. "A fair and efficient solution to the socialist millionaires' problem". In: Discrete Applied Mathematics 111.1 (2001). Coding and Cryptology, pp. 23–36. ISSN: 0166-218X. DOI: 10.1016/S0166-218X(00)00342-5.
- [MR21] Daniel Masny and Peter Rindal. *Endemic Oblivious Transfer*. July 2021. iacr: 2019/706.