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Introduction %Y WATERLOO

Information security is the goal

Cryptography captures part of that goal formally
Operates in a security model
A mathematical abstraction of the real world

Inductive reasoning tests validity of the model
Operates under assumptions (many implicit)

Many breaches of security occur by bypassing the model
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Introduction %Y WATERLOO

Quantum information
Constructive: No-cloning theorem
Quantum key distribution (QKD)
Destructive: Faster cryptanalysis

Shor’s algorithm
Grover's algorithm

Quantum Information is notorious for being unintuitive, increasing
the reliance on mathematics for assessing security.
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Thesis Statement 2 WATERLOO

Information security in the context of quantum information has a
strong dependency on mathematical definitions of security, yet
sound engineering practices remain unavoidable in order to
construct meaningfully secure cryptographic protocols.
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Main contributions A WATERLOO

Preventing key exhaustion in QKD
Terrorist fraud on quantum distance bounding

Key authentication from post-quantum KEMs
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Preventing key exhaustion in QKD %) WATERLOO

Preventing key exhaustion in QKD
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% WATERLGO

Key exhaustion in QKD

Secret Key

Secret Key

Plaintext > Encryption

Classical post-processing of quantum communication
output is either an ITS key or abort
Authenticated channels are realized by ITS MACs

a MAC tag is a universal hash + one-time pad
part of the shared key must be discarded

Consumed key is replaced with fresh QKD output
but what if QKD aborts?

» —| Plaintext

S. R. Verschoor Quantum Information in Security Protocols 2021-09-20 8/28



Key exhaustion in QKD 2 WATERLOO

Key exhaustion is achieved by
Noise on quantum channel
Tampering with post-processing
Impact is more severe than common Denial-of-Service
abort all communication; or
recover (lowering security of future sessions)

Applies to almost all practically deployed systems!

Lat least the ones that are specified in sufficient detail
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Preventing key exhaustion %) WATERLOO

Solution:

Computational authentication of each message
ITS authentication of the transcript
resulting QKD output is ITS confidential and authenticated

Simple implementation leads to desynchronization

| propose two solutions for preventing desynchronization
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Preventing key-exhaustion % WATERLOO

1. Decoy-based solution

Hide when the real ITS authentication is being done
N shared keys, of which ¢ may already be consumed
shared QKD output is already computationally authenticated
sample number of decoy rounds (d) from ¢ bits of QKD output
first send d decoy tags (with comp. auth.)
then send the two real ITS tags (with comp. auth.)

Adversary consumes one or two keys by blocking a real tag
block early tag: probably no key was consumed
block late tag: probably real tag was missed
block last tag is “optimal”

Exponentially many sessions must be attacked until all keys
are exhausted
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Preventing key-exhaustion % WATERLOO

2. Ratchet-based solution
MAC key is only exhausted once the MAC tag is sent
not when the tag is computed

S. R. Verschoor Quantum Information in Security Protocols 2021-09-20 12/28



Preventing key-exhaustion % WATERLOO

Alice (A, A") Bob (B)

| | quantum communication
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Terrorist fraud in quantum distance bounding 4 WATERLOO

2. Terrorist fraud in quantum distance bounding
Many scenario's require authenticity of identity and location

Secure building access
Keyless car entry
Contactless payments

Solution: distance bounding protocols
Much DB literature is in an informal framework

| demonstrate attacks on all (three) existing quantum distance
bounding protocols
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Distance Bounding %) WATERLOO

Distance Fraud:

—— Prover
-VellhEI //—— (Dishonest)

Mafia Fraud:
‘ Verifier }—{ Adversary }7//

Timed challenge-response protocol
generate ephemeral key from shared long-term key k
keyed hash function over public nonces
many single bit challenges (¢;) and responses (r;)
time-of-flight gives upper bound on distance
(sometimes) concluded by a verification phase
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Terrorist fraud %Y WATERLOO

Terrorist fraud

- Prove
e} —Aeomie]— /| et

Prover can assist the accomplice to fool the verifier
but cannot give long-term key k to the accomplice

Classical countermeasure: two ephemeral keys

d= gk(Nv; Np)
b = Encrypty(k)
correct responses depend on both d and b
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Quantum distance bounding % WATERLOO

Three QDB protocols exist

Send qubits instead of bits in the rapid phase
challenge |¢;)
response |1);)

For all three protocols | show that

TF countermeasure with b = d @ k: leaks the key k
TF countermeasure with b = AES,4(k): does not prevent TF
no TF countermeasure: existing analysis is flawed
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AMSP protocol %Y WATERLOO

The AMSP protocol [Abi+17]
first half: |¢,> = |’(/),> = H C,'>

second half: ¢ ,) = [¥irn) = HY |cin)
prover concludes by sending MAC(c)

prevents simple reflection

Extracting k from the prover (when b= d @ k)
send [¢1) = [0)
let x be the measurement outcome of |1);)
if x#0, then d; =1
if both d; and b; leak in this manner, then k; leaks
otherwise you have still gained partial information about k;

use that to attack subsequent rounds more effectively
attacking 16 rounds extracts a full 128-bit key
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AMSP protocol %Y WATERLOO

Terrorist fraud (b = AESy4(k))

Blind cloning
Verifier Verifier

N

b Bl |
1
1
1
1

a !
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Key authentication from post-quantum KEMs % WATERLGO

3. Key authentication from PQ KEMs
Secure messaging

Success (also) depends on usabilty and adoptability of solutions
Reduced usability leads to lower security
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Key authentication %Y WATERLOO

Secure messaging

Initial key exchange between public keys

Key authentication "binds” those keys to the intended users
Many existing solutions

Manual fingerprint verification: usability problems
Secret-based zero-knowledge verification

in-band, intuitive

Socialist Millionaire Protocol [BSTO01]

implemented in Off-the-Record [AG07]

based on Diffie-Hellman: not post-quantum
| give a post-quantum replacement for the SMP in the
context of key authentication
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Private equality confirmation % WATERLOO

Alice and Bob share a (low-entropy) secret pwd
Alice and Bob have set up an OTR channel using pka and pkg
Alice computes input x = Hash(pka, pkg, ssid, pwd)
Bob computes input y = Hash(pka, pks, ssid, pwd)
The run the protocol to check if x = y in zero-knowledge
but malicious parties are allow to slightly alter the functionality
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Alice (z)

Private equality confirmation % WATERLOO
fpec Bob (y)
x or () Yy
[z =]
b
bz = y]
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Protocol % WATERLGO

Inputs x = x1x2 ... x, (Alice) and y = y1y> ...y, (Bob)
Run n OT's (Alice — Bob):
((Ai[0], Ai[1]), yi) — (B, Ailyil)
Let o(x) = A1[x1] & - - - & An[xq]
Alice knows a(-), Bob learns a(y).
Run n OT's (Bob — Alice)
They learn 8(x) and B(+)
Alice sends G(a(x)) @ B(x)
Bob rejects or replies a(y) & B(y)
Use an existing PQ OT protocol [MR21]
Built from (PQ) Key Encapsulation Mechanisms (KEMs)
UC-secure in the ROM
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Security argument %Y WATERLOO

SUC-secure in the OT-hybrid model

= UC-secure in the ROM
G should be pseudorandom and one-way

Security argument follows the structure of a simple hybrid
argument

= can be lifted to post-quantum security
OT must be UC post-quantum secure
G must be PQ pseudorandom and PQ one-way
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Implementation A WATERLOO

2-RTT protocol
Hybrid KEM

Kyber (Round3 CCA, NIST PQC Ivl 5)
ECDH (Ed448 Goldilocks, Decaf)

C99 (~2000 LoC)
Side-channel protection

Benchmarks (80-bit inputs)
Message size
254 KiB, 508 KiB, 254 KiB, 32 B
Speed
22 ms, 114 ms, 106 ms, 15 ms
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Conclusion % WATERLOO

A formal approach to cryptography is fundamental for security

Sound engineering is required to narrow the gap between
theory and practice

Quantum information impacts both of these aspects of
security

| have demonstrated
How to authenticate post-processing in QKD

How informal classical arguments are inadequate for quantum
security (in distance bounding)

How to build in-band PQ key authentication
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