
Secure Messaging in Mobile Environments

Sebastian Verschoor

Eindhoven University of Technology

December 7th, 2015

Outline

Introduction

Silent Circle instant messaging protocol (SCimp)
Key negotiation
Rekeying
Sending data
Progressive encryption
Group conversation
File transfer

Proverif results

Silent Text

Comparison with other protocols

Conclusions

Introduction

I Silent Circle instant messaging protocol (SCimp)

I Built on XMPP
I Mobile environment

I Asynchronous

I Security properties
I Confidentiality/Integrity/Availability
I Authentication of other party
I Deniability
I Key erasure
I Future secrecy
I (Privacy Protection)

SCimp: Key negotiation

Alice Bob

genKeyPair()
hash(pka)

genKeyPair()
pkb

DH(ska, pkb)
pka,maca

DH(skb, pka)
macb

Keys derived from DH

Confirm SAS

Out of band

Authenticated

SCimp: Key negotiation

I ECDHE gives shared secret Z , from which are derived:
I ksnd,0, krcv ,0, isnd,0, ircv ,0; for message encryption and

authentication
I maca,macb; to confirm knowledge of Z
I SAS; for authentication of identity
I cs; for rekeying

I User messages can be sent after four key exchange messages
I SAS confirms identity all previous communication

I Requires commitment to pka to prevent collision attack

I Completely ephemeral
I Deniable

SCimp: Rekeying

Alice Bob

Alice and Bob share cs

hash(pka),MACcs(pka)

pkb,MACcs(pkb)
Verify MACcs pka,maca

Verify MACcs
macb

Keys derived from DH and cs

SCimp: Rekeying

I First: store old decryption key (messages might arrive out of
order)

I Optional: SAS comparison only after several rekeyings

I Rekeying ensures future secrecy

I It is not specified when to rekey
I Protocol aborts on error

I Keys are discarded, including cs

SCimp: Sending data

I Encrypt
I ciphertext = AESkj (ij ,plaintext)

I Update keys (ratchet)
I kj+1 = MACkj (ij)
I ij+1 = ij + 1

I Send message:
I ij
I ciphertext

I No message signatures: deniable
I Ratchet enables key erasure, but:

I Out of order messages require you to store old keys
I Old keys compromise future keys



SCimp v2: Progressive encryption

Alice Server Bob

pkB

Bob?

pkB

genKeyPairs(): (sk0, pk0), (ska, pka)
Z0 = DH(sk0, pkB)
ct = AESk0(i0, pt)

pk0, ct; hash(pka)

(Temporary) keys derived from Z0

SCimp v2: Progressive encryption

I SAS confirmation after “regular” key negotiation
I Confirms entire conversation

I Vulnerable to Man In The Middle (MITM) attack‘
I MITM re-encrypts and forwards user messages
I MITM blocks keying messages

SCimp v2: Group conversation

I Everything encrypted with a single symmetric key

I Group initiator generates a random symmetric key k

I Generate random session key ks

I ciphertext = AESks(k)

I eks = ECC EncryptpkB (ks)

I Send: eks, ciphertext

I Decrypt

I Derive group key from k

I No authentication possible
I Relies on trust in the server
I Trivial MITM

SCimp v2: File transfer

I Files are encrypted and uploaded to the cloud

I Keys are exchanged using regular SCimp messages
I Convergent encryption

I key = hash(file)
I Missing a salt/secret
I Vulnerable to file confirmation attack
I Vulnerable to file swapping attack

Proverif results
I First key negotiation (if SAS confirmed over authenticated

channel)
X Confidentiality of keys
X Authenticity of keys and other party identity

I Rekeying
X Confidentiality of keys
X Authenticity of keys and other party identity
I Future secrecy

X When attacker misses first rekeying after compromise
X When users reconfirm the SAS

I Sending user message
X Confidentiality of keys
X Strong secrecy of messages
X Authenticity of messages and keys
X Forward secrecy (if keys can be erased)
X Deniability

I Progressive encryption
× Confidentiality/authenticity of first message
X Confidentiality/authenticity of all messages and keys (after

SAS is confirmed over an authenticated channel)

Silent Text: SCimp implementation

I CCM implementation does not validate authentication tag
I Problem in LibTomCrypt (fixed)

I Timing side-channel vulnerability
I All secrets compared with memcmp

I Race condition in message parsing queue

I Message keys are deleted before received messages are
validated

I Returned error codes are not checked

I Memory allocation is not checked

I State machine contains bugs and is often bypassed

I Style issues

Comparison with other protocols

SCimp v1 SCimp v2 OTR TextSecure

Data in first message × X(×) × X
Key erasure X X X XX
Preshare public keys × × X X
Rekey on each reply × × X X
Ratchet every message X X × X
ECC X X ×(X) X

Conclusions

I SCimp version 1 is secure (proven by Proverif)
I ...but does not solve problems of a mobile environment

I SCimp version 2 solves problems of a mobile environment
I ...but is insecure

I SCimp implementation has a lot of problems
I ...lowering both security and user experience

I OTR is secure and good for synchronous environment

I TextSecure is secure and good for mobile environment



Questions?


	Introduction
	Silent Circle instant messaging protocol (SCimp)
	Key negotiation
	Rekeying
	Sending data
	Progressive encryption
	Group conversation
	File transfer

	Proverif results
	Silent Text
	Comparison with other protocols
	Conclusions

