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Introduction

I Silent Circle instant messaging protocol (SCimp)

I Built on XMPP
I Mobile environment

I Asynchronous

I Security properties
I Confidentiality/Integrity/Availability
I Authentication of other party
I Deniability
I Key erasure
I Future secrecy
I (Privacy Protection)

SCimp: Key negotiation

Alice Bob

genKeyPair()
hash(pka)

genKeyPair()
pkb

DH(ska, pkb)
pka,maca

DH(skb, pka)
macb

Keys derived from DH

Confirm SAS

Out of band

Authenticated

SCimp: Key negotiation

I ECDHE gives shared secret Z , from which are derived:
I ksnd,0, krcv ,0, isnd,0, ircv ,0; for message encryption and

authentication
I maca,macb; to confirm knowledge of Z
I SAS; for authentication of identity
I cs; for rekeying

I User messages can be sent after four key exchange messages
I SAS confirms identity all previous communication

I Requires commitment to pka to prevent collision attack

I Completely ephemeral
I Deniable

SCimp: Rekeying

Alice Bob

Alice and Bob share cs

hash(pka),MACcs(pka)

pkb,MACcs(pkb)
Verify MACcs pka,maca

Verify MACcs
macb

Keys derived from DH and cs

SCimp: Rekeying

I First: store old decryption key (messages might arrive out of
order)

I Optional: SAS comparison only after several rekeyings

I Rekeying ensures future secrecy

I It is not specified when to rekey
I Protocol aborts on error

I Keys are discarded, including cs

SCimp: Sending data

I Encrypt
I ciphertext = AESkj (ij ,plaintext)

I Update keys (ratchet)
I kj+1 = MACkj (ij)
I ij+1 = ij + 1

I Send message:
I ij
I ciphertext

I No message signatures: deniable
I Ratchet enables key erasure, but:

I Out of order messages require you to store old keys
I Old keys compromise future keys



SCimp v2: Progressive encryption

Alice Server Bob

pkB

Bob?

pkB

genKeyPairs(): (sk0, pk0), (ska, pka)
Z0 = DH(sk0, pkB)
ct = AESk0(i0, pt)

pk0, ct; hash(pka)

(Temporary) keys derived from Z0

SCimp v2: Progressive encryption

I SAS confirmation after “regular” key negotiation
I Confirms entire conversation

I Vulnerable to Man In The Middle (MITM) attack‘
I MITM re-encrypts and forwards user messages
I MITM blocks keying messages

SCimp v2: Group conversation

I Everything encrypted with a single symmetric key

I Group initiator generates a random symmetric key k

I Generate random session key ks

I ciphertext = AESks(k)

I eks = ECC EncryptpkB (ks)

I Send: eks, ciphertext

I Decrypt

I Derive group key from k

I No authentication possible
I Relies on trust in the server
I Trivial MITM

SCimp v2: File transfer

I Files are encrypted and uploaded to the cloud

I Keys are exchanged using regular SCimp messages
I Convergent encryption

I key = hash(file)
I Missing a salt/secret
I Vulnerable to file confirmation attack
I Vulnerable to file swapping attack

Proverif results
I First key negotiation (if SAS confirmed over authenticated

channel)
X Confidentiality of keys
X Authenticity of keys and other party identity

I Rekeying
X Confidentiality of keys
X Authenticity of keys and other party identity
I Future secrecy

X When attacker misses first rekeying after compromise
X When users reconfirm the SAS

I Sending user message
X Confidentiality of keys
X Strong secrecy of messages
X Authenticity of messages and keys
X Forward secrecy (if keys can be erased)
X Deniability

I Progressive encryption
× Confidentiality/authenticity of first message
X Confidentiality/authenticity of all messages and keys (after

SAS is confirmed over an authenticated channel)

Silent Text: SCimp implementation

I CCM implementation does not validate authentication tag
I Problem in LibTomCrypt (fixed)

I Timing side-channel vulnerability
I All secrets compared with memcmp

I Race condition in message parsing queue

I Message keys are deleted before received messages are
validated

I Returned error codes are not checked

I Memory allocation is not checked

I State machine contains bugs and is often bypassed

I Style issues

Comparison with other protocols

SCimp v1 SCimp v2 OTR TextSecure

Data in first message × X(×) × X
Key erasure X X X XX
Preshare public keys × × X X
Rekey on each reply × × X X
Ratchet every message X X × X
ECC X X ×(X) X

Conclusions

I SCimp version 1 is secure (proven by Proverif)
I ...but does not solve problems of a mobile environment

I SCimp version 2 solves problems of a mobile environment
I ...but is insecure

I SCimp implementation has a lot of problems
I ...lowering both security and user experience

I OTR is secure and good for synchronous environment

I TextSecure is secure and good for mobile environment



Questions?
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