

Outline

- Cryptography
 - Basics
 - Post-Quantum Cryptography (PQC)
- Quantum Key Distribution (QKD)
 - QKD Network
 - TU/e testbed

Outline

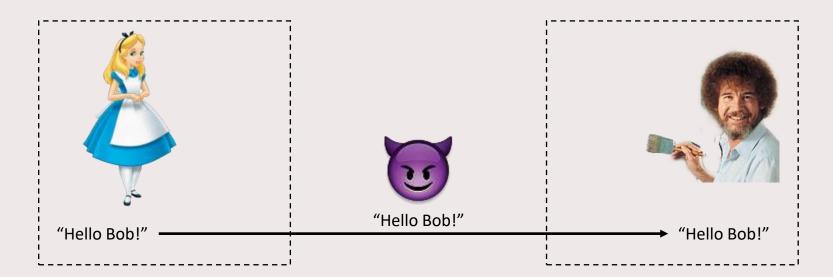
- Cryptography
 - Basics
 - Post-Quantum Cryptography (PQC)
- Quantum Key Distribution (QKD)
 - QKD Network
 - TU/e testbed

Cryptography – the basics

- Alice and Bob want to communicate
 - Mallory is actively interfering with them
 - (in some weaker models Eve is only passively eavesdropping)
- Kerckhoff's principle
 - aka Shannon's Maxim: "the enemy knows the system"
 - but Mallory does not know the keys
- Mallory carries the messages (Dolev-Yao model)
 - she can inspect, change, re-order, replay, drop, inject any message
 - may (sometimes) compromise some participants

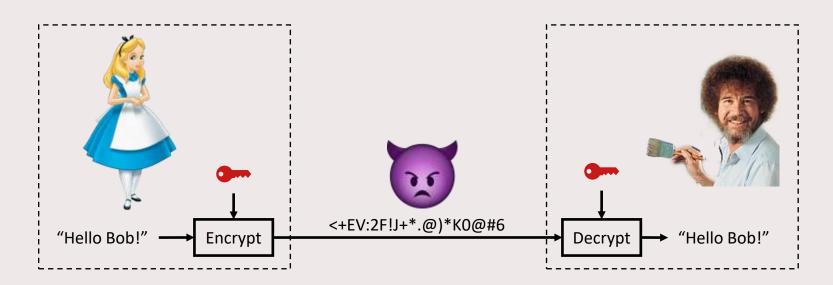
Confidentiality

Alice and Bob want their message to remain secret



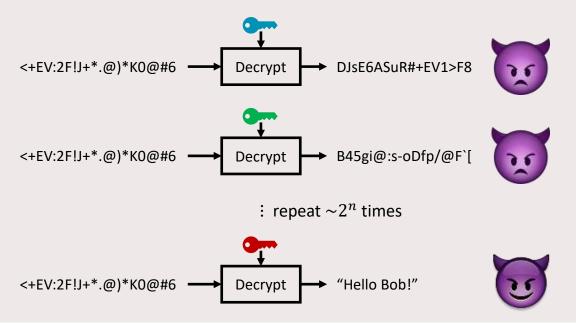
Encryption

- Symmetric encryption: Alice and Bob need to share a secret key
 - examples: AES, ChaCha20, one-time pad



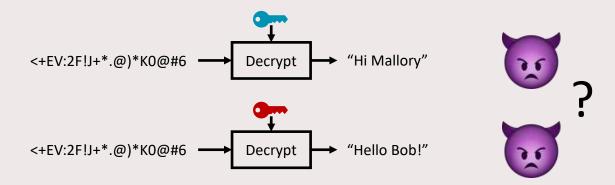
Confidentiality (computational)

- The ciphertext "gives no information" about the plaintext
- n-bit security: Mallory expects to try 2^n keys before finding the right one



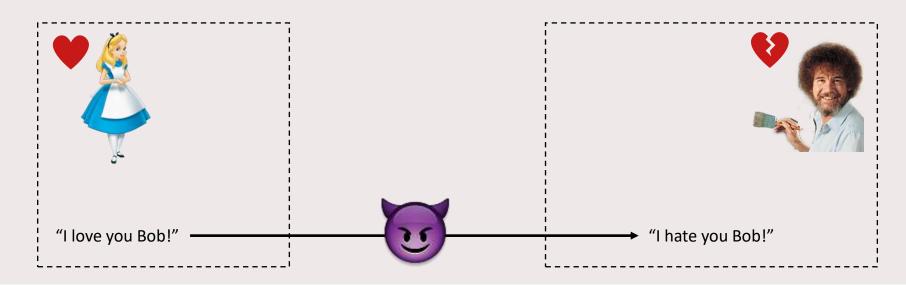
Confidentiality (information theoretical)

- Perfect security
 - Mallory has no way of distinguishing correct decryptions from incorrect ones
- Requires a one-time pad
 - Key can only be used once



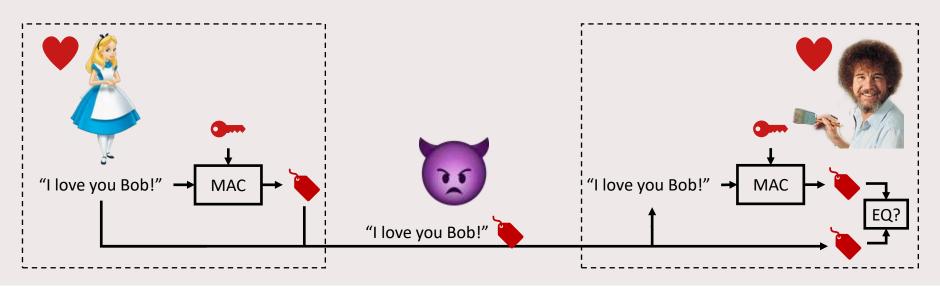
Integrity and authentication

- Integrity: nobody should be able to change the message
- Authentication: Bob knows the message came from Alice



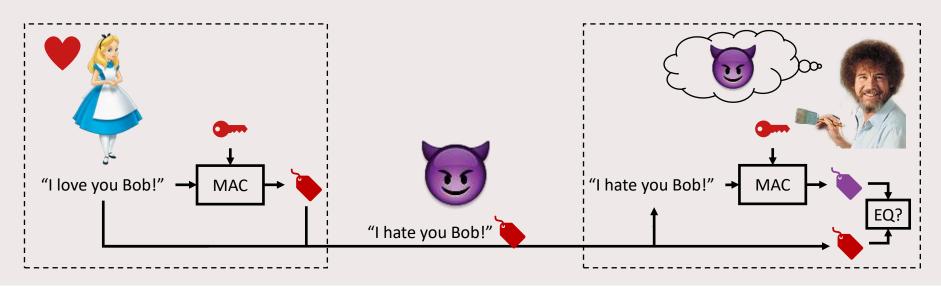
Message Authentication Code (MAC)

- Symmetric: Alice and Bob need to share a secret key
 - allows Bob to detect any changes
 - examples: HMAC, Poly1305



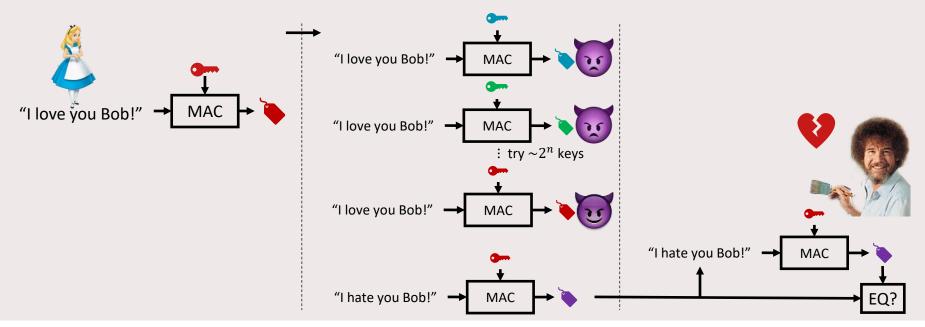
Message Authentication Code (MAC)

- Symmetric: Alice and Bob need to share a secret key
 - allows Bob to detect any changes
 - examples: HMAC, Poly1305



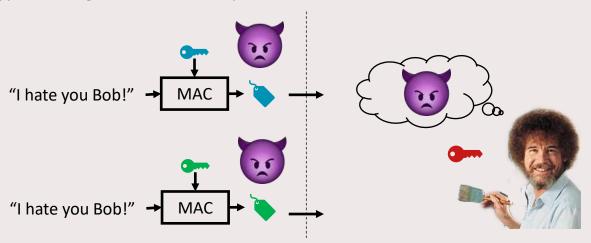
Unforgeability (computational)

- Mallory cannot forge tags for any (other) message
- n-bit security: Mallory can locally try to find the correct key among 2^n keys



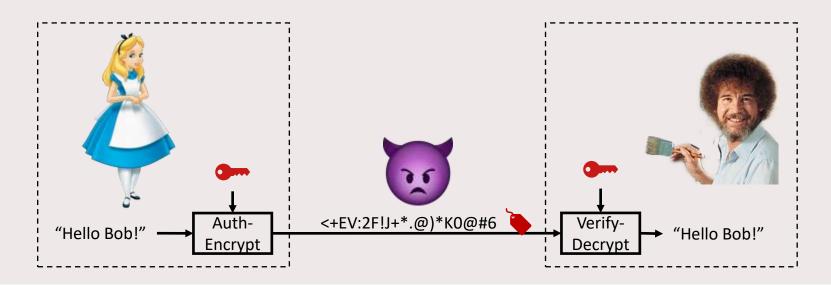
Authentication (information theoretical)

- Mallory cannot verify forgeries locally
- *n*-bit security: each forgery succeeds with probability 2^{-n}
 - statistical security
- Requires discarding the authentication key (or at least some part of it)
 - "encrypt" the tag with a one-time pad



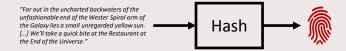
Authenticated Encryption

- Combined encryption and authentication
 - required for confidentiality against active attackers!



Cryptographic hashing

Given a long message M, a hash function computes a small message digest



The digest is also called the fingerprint, or simply "the hash of M". Note there is no key involved.

Hash should behave as a random function:

- given , it should be hard to compute M
- it is hard to find any M_0 , M_1 such that $\operatorname{Hash}(M_0) = \operatorname{Hash}(M_1)$

Hash functions are used everywhere in cryptography.

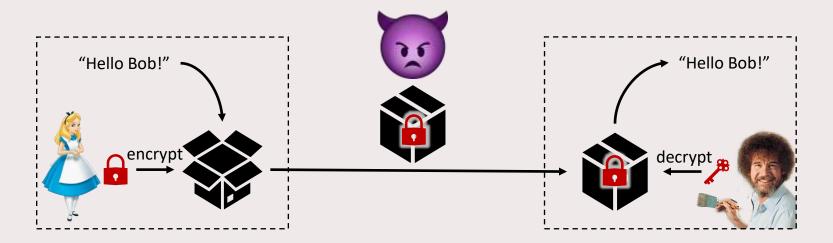
Examples: MD5 (broken), SHA2, SHA3

Public key cryptography

- Parties generate a keypair: (, ,)
 - give the public key () to everybody, so anybody can use it
 - keep the private key () secret
- Also called asymmetric cryptography
- Example usage:
 - key exchange
 - digital signatures
 - public key encryption
- Example systems, used on the internet today:
 - RSA
 - Elliptic curve cryptography (ECC)
 - Diffie-Hellman key exchange (DH)

Public key encryption

- Bob generates a keypair: (, , , , , gives , to Alice)
- Provides confidentiality, but no authenticity (because everybody can encrypt)



Digital signatures

- Alice generates a keypair: (♣, ♣), gives ♣ to Bob
 - Alice can put a signature () on any message, using her private key ()
 - Provides:
 - message integrity (nobody can change the message)
 - message authentication (Bob knows message came from Alice)
 - non-repudiation (Alice can't deny signing message)

Example: RSA

- Rivest-Shamir-Adleman (RSA)
- Private key (): two random large primes (p, q)
- Public key (\bigcirc): $N = p \cdot q$
- System parameter: e (usually 65537)
- Security based on the hardness of factoring
 - given N, it should be hard to find p, q

Example: RSA-KEM

- Key encapsulation mechanism (KEM)
 - generate a random symmetric key k ()
 - (authenticate-)encrypt the message using k
 - encapsulate k to the recipient's public key (\bigcirc = N)
- Alice knows Bob's public key N:
 - 1. she generates a random *k*
 - 2. she encapsulates *k*:

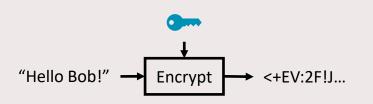
$$c = k^e \mod N$$

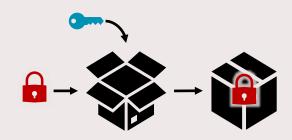
- Bob, given c and using his private key $(\nearrow^{=} (p, q))$:
 - 1. he computes:

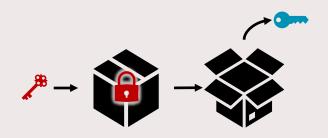
$$d = e^{-1} \bmod (p-1)(q-1)$$

2. he decapsulates:

$$k = c^d \mod N$$







Example: RSA signature

- Alice wants to sign message M using her private key $(\nearrow^{\mathbb{R}} = (p, q))$
 - 1. she hashes the message

2. she computes the signature

$$\sigma = H^d \mod N$$

- Bob verifies (M, σ) using Alice's public key $(\{ \} = N)$
 - 1. he computes

$$H' = \sigma^e \mod N$$

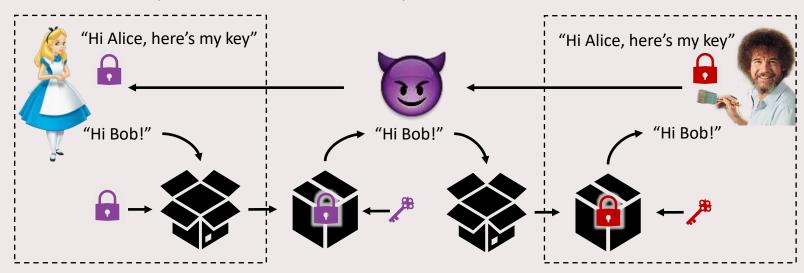
2. he hashes the message

$$H = \operatorname{Hash}(M)$$

3. he checks if H = H'

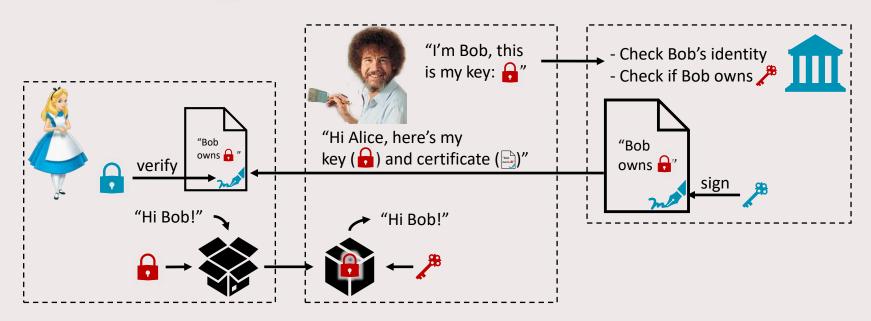
Key authentication

- Public keys are usually provided at the start of a protocol
- How do you know the key actually belongs to the claimed owner?
 - you need key authentication, otherwise you are vulnerable to a Mallory-in-the-Middle attack



Certificates

- Requires a trusted third party (im)
- Alice must have , for example pre-installed on her computer



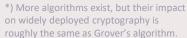
Outline

- Cryptography
 - Basics
 - Post-Quantum Cryptography (PQC)
- Quantum Key Distribution (QKD)
 - QKD Network
 - TU/e testbed

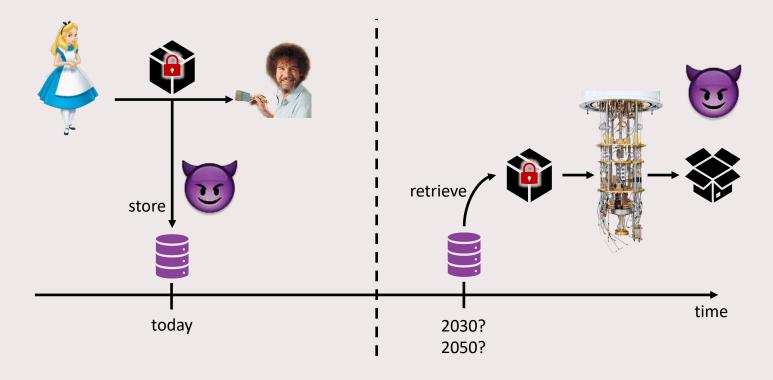
Quantum Computers

Two* algorithms threaten existing cryptography

- 1. Shor's algorithm for period finding can efficiently ...
 - a. ... factor $N \Rightarrow$ breaks RSA
 - b. ... find discrete logarithms ⇒ breaks ECC, breaks DH
- 2. Grover's search algorithm can ...
 - ... try 2^n keys with only $2^{n/2}$ quantum queries
 - ⇒ double key-length suffices for symmetric cryptography



Harvest now, decrypt later

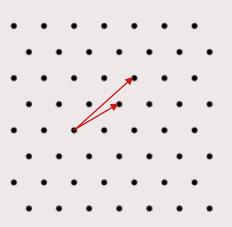


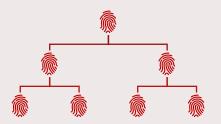
Post-Quantum Cryptography (PQC)

Alice & Bob have classical computer Mallory has a quantum computer

Replace factoring (or discrete log) with other problems:

- Lattice-based cryptography
 - both KEMs and signatures
- Hash-based cryptography
 - signatures
- Error correcting codes
 - KEMs
- Multivariate cryptography
 - (mainly) signatures
- Isogeny-based cryptography (maybe broken?)



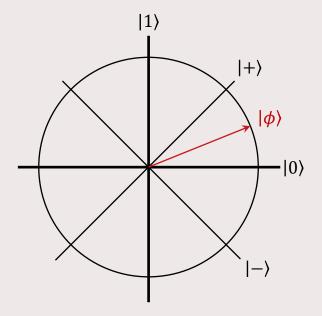


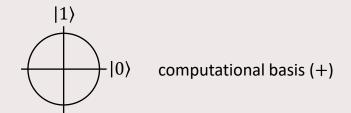
Outline

- Cryptography
 - Basics
 - Post-Quantum Cryptography (PQC)
- Quantum Key Distribution (QKD)
 - QKD Network
 - TU/e testbed

Quantum information (the bare minimum for QKD)

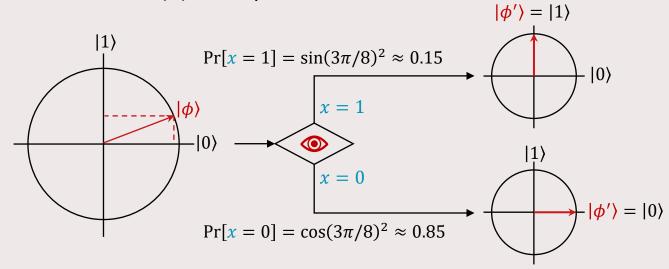
A qubit is a vector





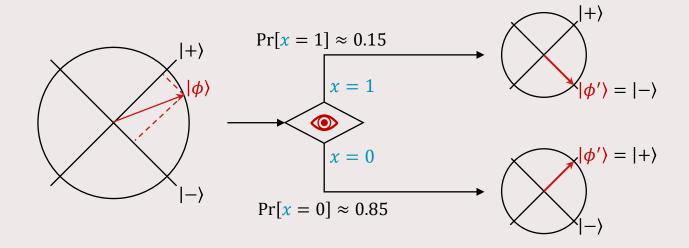
If we **measure** (**(()**) a qubit

- it collapses onto the measurement basis
 - with probability defined by the in-product of qubit and basis vector
- we get a classical bit (x) as output



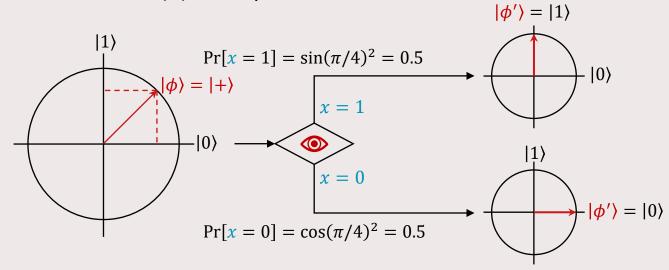
If we **measure** (**((()**) a qubit

- it *collapses* onto the measurement basis
 - with probability defined by the in-product of qubit and basis vector
- we get a classical bit (x) as output



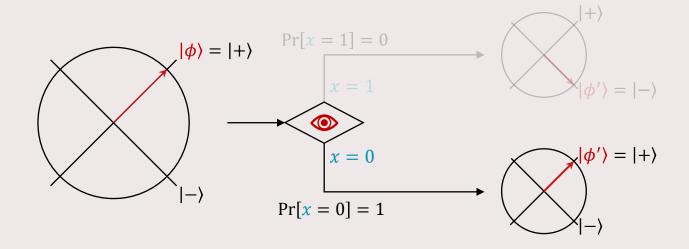
If we **measure** (**(()**) a qubit

- it collapses onto the measurement basis
 - with probability defined by the in-product of qubit and basis vector
- we get a classical bit (x) as output

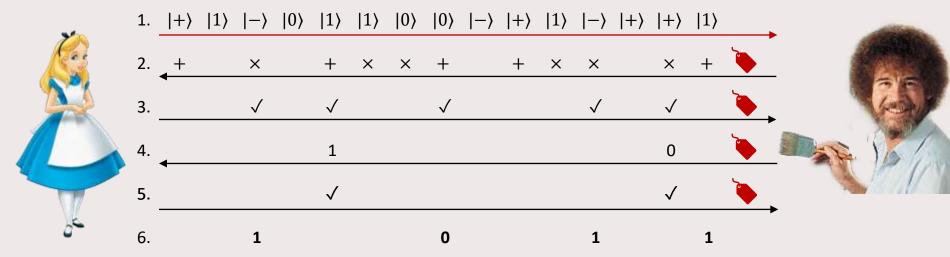


If we **measure** (**(()**) a qubit

- it *collapses* onto the measurement basis
 - with probability defined by the in-product of qubit and basis vector
- we get a classical bit (x) as output



Bennett-Brassard (BB84)



- 1. Alice sends random qubits (some may not arrive)
- 2. Bob measures in random bases, reveals them to Alice after the measurement
- 3. Alice confirms when sending/measurement basis were the same
- 4. Bob reveals each measurement outcome bit with probability ½
- 5. Alice confirms the bits are correct (and aborts if any bit is incorrect)
- 6. Both use the remaining bits as shared key: 1011

All classical messages are authenticated, as indicated by the tags ().

BB84, improvements

- Information reconciliation
 - error correction instead of error detection
- Privacy amplification
 - Mallory may have some information about the secret bits
 - "distill" these bits a shorter key so Mallory has only negligible information
- Require fewer check bits

Security of QKD

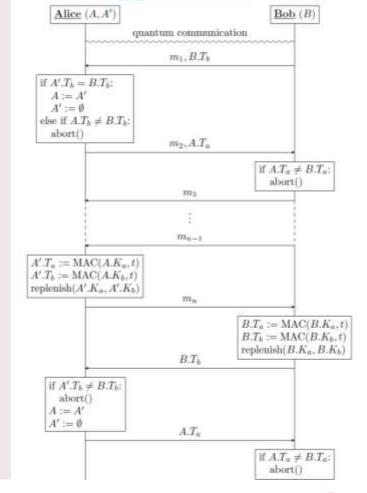
- Key is statistically independent from Mallory's observations
 - cannot be broken by trying more keys or future cryptanalysis
 - can be broken by exploiting discrepancies between hardware and model
- Use key as one-time pad + statistical MAC:
 - security independent of any computational assumptions
- Use key in computational (symmetric) cryptography
 - breaks only if the computational cryptography breaks
 - (this is often done because of the low key-rate of QKD)

QKD authentication

- Authentication typically done with statistically secure MACs
 - but then we assume shared keys
 - so it's not key distribution, so much as it is key expansion
 - and we have to discard some key material
 - consumed keys can be replaced with fresh QKD output
 - requires some care to prevent key exhaustion (by Mallory)
- However, we can authenticate with computational MACs or signatures
 - if authentication isn't broken now,
 then the output key will never be broken later

Preventing key exhaustion

- Authenticate every message computationally
- Authenticate the transcript statistically
- Prevent Mallory from desynchronizing us:
 - Compute tags the round before sending them
 - Send the previous tags at the session start



Outline

- Cryptography
 - Basics
 - Post-Quantum Cryptography (PQC)
- Quantum Key Distribution (QKD)
 - QKD Network
 - TU/e testbed

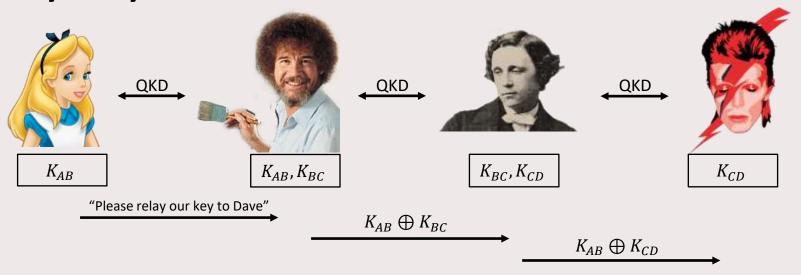
QKD limitation

- QKD is a point-to-point protocol
- Single photon travel distance in fiber/free-space is limited
 - up to hundreds of kilometer (<100 km in practice)
 - but key-rate drops with larger distance
- No repeaters allowed
 - You cannot measure and resend the qubits (for the same reason Mallory can't)
 - quantum repeaters theoretically exist, but require stable quantum memory

Trusted repeater network

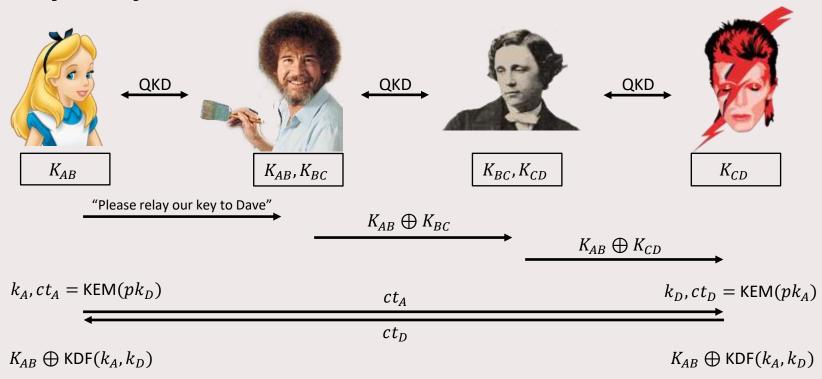
- Meet Alice, Bob, Carroll, and David
- Each neighbouring pair is linked via QKD
- They trust each other, which means ...
 - ... they follow the protocol specification
 - ... throw away keys after they have been used
 - ... take care of their devices and keep out hackers/three letter agencies

Key relay



 K_{AB}

Key relay



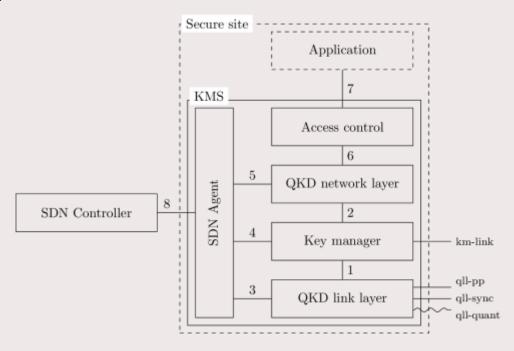
Outline

- Cryptography
 - Basics
 - Post-Quantum Cryptography (PQC)
- Quantum Key Distribution (QKD)
 - QKD Network
 - TU/e testbed

Key Management Server

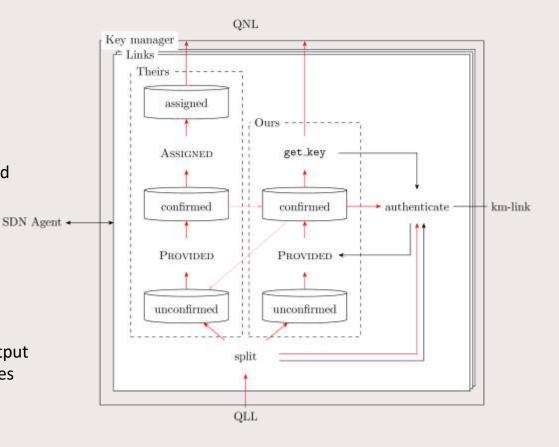
Apps live within secure site

- QLL manages QKD protocols
- KM caches keys
- QNL relays between neighbours
- SDN determines routes



Key manager

- KM Main goal: synchronizing keys
 - incoming keys are split ~50/50
 - we can always take from `ours`
 - we only take from `theirs` if instructed
- Multiple links per node
 - Bob is linked to Alice
 - Bob is linked to Carroll
- Multiple providers per link
 - Alice and Bob may run multiple QKD protocols to increase bandwidth
- Authenticate using MACs
 - use fresh key for confirming fresh output
 - use confirmed keys for other messages



Eindhoven QKD testbed – phase 1

Eindhoven QKD testbed – phase 2

Eindhoven QKD testbed – phase 3

Thank you

Slides are available online: https://zeroknowledge.me/talks/#iotalentum22

Quantum information (slightly beyond the bare minimum)

A qubit is a binary state of a quantum system

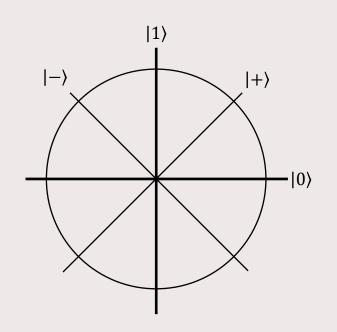
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$|+\rangle = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|-\rangle = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Generally
$$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$$
, with $|\alpha|^2+|\beta|^2=1$



Quantum information (slightly beyond the bare minimum)

The *dual* vector of $|\psi\rangle$ is $\langle\psi|=(\alpha^*,\beta^*)$ (the conjugate transpose) Then $\langle\phi|\psi\rangle=\langle\phi|\cdot|\psi\rangle$ is an inner product.

If we **measure** $|\psi\rangle$ in *computational* basis $\{|0\rangle, |1\rangle\}$, then $|\psi\rangle$ is **destroyed** and we get an output label x:

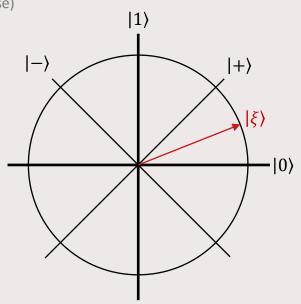
$$\Pr[x=0] = |\langle 0|\psi\rangle|^2$$

$$\Pr[x=1] = |\langle 1|\psi\rangle|^2$$

Similarly if we measure in *Hadamard* basis $\{|+\rangle, |-\rangle\}$:

$$\Pr[x=0] = |\langle +|\psi\rangle|^2$$
 and $\Pr[x=1] = |\langle -|\psi\rangle|^2$

Example: if we measure $|\xi\rangle$ (see picture) in either basis, we get output label 0 with probability $\frac{2+\sqrt{2}}{4}\approx 0.85$



Key relay (alternative)

