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• Cryptography
• Basics
• Post-Quantum Cryptography (PQC)

• Quantum Key Distribution (QKD)
• QKD Network
• TU/e testbed

Cryptography – the basics

• Alice and Bob want to communicate
• Mallory is actively interfering with them
• (in some weaker models Eve is only passively eavesdropping)

• Kerckhoff’s principle
• aka Shannon’s Maxim: “the enemy knows the system”
• but Mallory does not know the keys

• Mallory carries the messages (Dolev-Yao model)
• she can inspect, change, re-order, replay, drop, inject any message
• may (sometimes) compromise some participants
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Confidentiality

• Alice and Bob want their message to remain secret
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“Hello Bob!”
“Hello Bob!”

“Hello Bob!”

Encryption

• Symmetric encryption: Alice and Bob need to share a secret key
• examples: AES, ChaCha20, one-time pad
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Encrypt“Hello Bob!”
<+EV:2F!J+*.@)*K0@#6

Decrypt “Hello Bob!”

Confidentiality (computational)
• The ciphertext “gives no information” about the plaintext
• n-bit security: Mallory expects to try 2𝑛 keys before finding the right one
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<+EV:2F!J+*.@)*K0@#6 Decrypt DJsE6ASuR#+EV1>F8

<+EV:2F!J+*.@)*K0@#6 Decrypt B45gi@:s-oDfp/@F`[

<+EV:2F!J+*.@)*K0@#6 Decrypt “Hello Bob!”

⋮ repeat ~2𝑛 times
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Confidentiality (information theoretical)

• Perfect security
• Mallory has no way of distinguishing correct decryptions from incorrect ones

• Requires a one-time pad
• Key can only be used once
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<+EV:2F!J+*.@)*K0@#6 Decrypt “Hi Mallory”

<+EV:2F!J+*.@)*K0@#6 Decrypt “Hello Bob!”

?

Integrity and authentication

• Integrity: nobody should be able to change the message
• Authentication: Bob knows the message came from Alice 
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“I love you Bob!” “I hate you Bob!”

Message Authentication Code (MAC)

• Symmetric: Alice and Bob need to share a secret key
• allows Bob to detect any changes
• examples: HMAC, Poly1305
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“I love you Bob!” MAC MAC“I love you Bob!”

EQ?
“I love you Bob!”

Message Authentication Code (MAC)

• Symmetric: Alice and Bob need to share a secret key
• allows Bob to detect any changes
• examples: HMAC, Poly1305
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“I love you Bob!” MAC MAC“I hate you Bob!”

EQ?
“I hate you Bob!”

Unforgeability (computational)
• Mallory cannot forge tags for any (other) message
• n-bit security: Mallory can locally try to find the correct key among 2𝑛 keys
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“I love you Bob!” MAC

“I love you Bob!” MAC

⋮ try ~2𝑛 keys

“I love you Bob!” MAC

“I love you Bob!” MAC

“I hate you Bob!” MAC

“I hate you Bob!” MAC

EQ?

Authentication (information theoretical)
• Mallory cannot verify forgeries locally
• n-bit security: each forgery succeeds with probability 2−𝑛

• statistical security

• Requires discarding the authentication key (or at least some part of it)
• “encrypt” the tag with a one-time pad
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“I hate you Bob!” MAC

“I hate you Bob!” MAC
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Authenticated Encryption

• Combined encryption and authentication
• required for confidentiality against active attackers!
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Auth-
Encrypt

“Hello Bob!”
<+EV:2F!J+*.@)*K0@#6 Verify-

Decrypt
“Hello Bob!”

Cryptographic hashing

Given a long message M, a hash function computes a small message digest

The digest is also called the fingerprint, or simply “the hash of M”.
Note there is no key involved.

Hash should behave as a random function:
• given     , it should be hard to compute M
• it is hard to find any 𝑀0, 𝑀1 such that Hash 𝑀0 = Hash 𝑀1

Hash functions are used everywhere in cryptography.
Examples: MD5 (broken), SHA2, SHA3
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Hash
“Far out in the uncharted backwaters of the 
unfashionable end of the Wester Spiral arm of 
the Galaxy lies a small unregarded yellow sun. 
[…] We’ll take a quick bite at the Restaurant at 
the End of the Universe.”

Public key cryptography

• Parties generate a keypair: (      ,     )
• give the public key (     ) to everybody, so anybody can use it
• keep the private key (     ) secret

• Also called asymmetric cryptography
• Example usage:
• key exchange
• digital signatures
• public key encryption

• Example systems, used on the internet today:
• RSA
• Elliptic curve cryptography (ECC)
• Diffie-Hellman key exchange (DH)
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Public key encryption

• Bob generates a keypair: (      ,     ), gives      to Alice
• Provides confidentiality, but no authenticity (because everybody can encrypt)
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“Hello Bob!” “Hello Bob!”

The box analogy is better suited for 
hybrid authenticated encryption (e.g. 
crypto_secretbox in NaCl)

encrypt decrypt

Digital signatures

• Alice generates a keypair: (      ,     ), gives      to Bob
• Alice can put a signature (      ) on any message, using her private key (      )
• Provides:
• message integrity (nobody can change the message)
• message authentication (Bob knows message came from Alice)
• non-repudiation (Alice can’t deny signing message)
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sign verify

“Hi Bob!” “Hi Bob!”

Example: RSA

• Rivest-Shamir-Adleman (RSA)

• Private key (     ): two random large primes (p, q)
• Public key (    ): N = p ∙ q
• System parameter: e (usually 65537)

• Security based on the hardness of factoring
• given N, it should be hard to find p, q
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Example: RSA-KEM
• Key encapsulation mechanism (KEM)
• generate a random symmetric key k (       )
• (authenticate-)encrypt the message using k
• encapsulate k to the recipient’s public key (      = N)

• Alice knows Bob’s public key N:
1. she generates a random k
2. she encapsulates k:

𝑐 = 𝑘𝑒 mod 𝑁

• Bob, given c and using his private key ( = (p, q)):
1. he computes:

𝑑 = 𝑒−1 mod (𝑝 − 1)(𝑞 − 1)
2. he decapsulates:

𝑘 = 𝑐𝑑 mod 𝑁
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Encrypt“Hello Bob!” <+EV:2F!J…

Example: RSA signature

• Alice wants to sign message M using her private key (      = (p, q))
1. she hashes the message

= 𝐻 = Hash(𝑀)
2. she computes the signature

𝜎 = 𝐻𝑑 mod 𝑁

• Bob verifies (M, 𝜎) using Alice’s public key (    = N)
1. he computes

𝐻′ = 𝜎𝑒 mod 𝑁
2. he hashes the message

𝐻 = Hash(𝑀)
3. he checks if H = H’
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Key authentication
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“Hi Bob!”

“Hi Alice, here’s my key”“Hi Alice, here’s my key”

“Hi Bob!” “Hi Bob!”

• Public keys are usually provided at the start of a protocol
• How do you know the key actually belongs to the claimed owner?
• you need key authentication,

otherwise you are vulnerable to a Mallory-in-the-Middle attack
“I’m Bob, this 
is my key:      ”

Certificates
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• Requires a trusted third party (      )
• Alice must have      , for example pre-installed on her computer

“Bob 
owns     ”

- Check Bob’s identity 
- Check if Bob owns 

sign

“Bob 
owns       ”

“Hi Bob!”

verify

“Hi Alice, here’s my
key (     ) and certificate (    )”

“Hi Bob!”

“Bob 

owns    ”

Quantum Computers

Two* algorithms threaten existing cryptography
1. Shor’s algorithm for period finding can efficiently …

a. … factor N ⇒ breaks RSA
b. … find discrete logarithms ⇒ breaks ECC, breaks DH

2. Grover’s search algorithm can …
• ... try 2𝑛 keys with only 2𝑛/2 quantum queries

⇒ double key-length suffices for symmetric cryptography
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*) More algorithms exist, but their impact 
on widely deployed cryptography is 
roughly the same as Grover’s algorithm.

Harvest now, decrypt later
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today 2030?
2050?

store
retrieve

time

20 21

22 23

25 26
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Post-Quantum Cryptography (PQC)
Alice & Bob have classical computer
Mallory has a quantum computer

Replace factoring (or discrete log) with other problems:
• Lattice-based cryptography 
• both KEMs and signatures

• Hash-based cryptography
• signatures

• Error correcting codes
• KEMs

• Multivariate cryptography
• (mainly) signatures

• Isogeny-based cryptography (maybe broken?)
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NIST

NIST

Quantum information (the bare minimum for QKD)

A qubit is a vector
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1

0

+

−

1

0

+

−

computational basis (+)

Hadamard basis (×)

𝜙
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Measurement

1

0

𝜙

1

𝜙′ = 0

𝜙′ = 1

0
Pr 𝑥 = 1 = sin 3𝜋/8 2 ≈ 0.15

Pr 𝑥 = 0 = cos 3𝜋/8 2 ≈ 0.85

𝑥 = 0

𝑥 = 1

If we measure (     ) a qubit
• it collapses onto the measurement basis
• with probability defined by the in-product of qubit and basis vector

• we get a classical bit (𝑥) as output
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If we measure (     ) a qubit
• it collapses onto the measurement basis
• with probability defined by the in-product of qubit and basis vector

• we get a classical bit (𝑥) as output

Measurement

−

+

𝜙

−

𝜙′ = +

𝜙′ = −

+

Pr 𝑥 = 1 ≈ 0.15

Pr 𝑥 = 0 ≈ 0.85

𝑥 = 0

𝑥 = 1
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Measurement

1

0

𝜙 = +

1

𝜙′ = 0

𝜙′ = 1

0
Pr 𝑥 = 1 = sin 𝜋/4 2 = 0.5

Pr 𝑥 = 0 = cos 𝜋/4 2 = 0.5

𝑥 = 0

𝑥 = 1

If we measure (     ) a qubit
• it collapses onto the measurement basis
• with probability defined by the in-product of qubit and basis vector

• we get a classical bit (𝑥) as output
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If we measure (     ) a qubit
• it collapses onto the measurement basis
• with probability defined by the in-product of qubit and basis vector

• we get a classical bit (𝑥) as output

Measurement

−

𝜙 = +

−

𝜙′ = +

Pr 𝑥 = 0 = 1

𝑥 = 0

27 29

30 31

32 33
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2. + × + × × + + × × × + 2

3. ✓ ✓ ✓ ✓ ✓ 3

4. 1 0 4

5. ✓ ✓ 55. ✓ ✓ 5

6. 1 0 1 1

1. |+⟩ |1⟩ |−⟩ |0⟩ |1⟩ |1⟩ |0⟩ |0⟩ |−⟩ |+⟩ |1⟩ |−⟩ |+⟩ |+⟩ |1⟩

Bennett-Brassard (BB84)
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1. Alice sends random qubits (some may not arrive)
2. Bob measures in random bases, reveals them to Alice after the measurement
3. Alice confirms when sending/measurement basis were the same
4. Bob reveals each measurement outcome bit with probability ½
5. Alice confirms the bits are correct (and aborts if any bit is incorrect)
6. Both use the remaining bits as shared key: 1011

All classical messages are 
authenticated, as indicated 
by the tags (      ).

BB84, improvements

• Information reconciliation
• error correction instead of error detection

• Privacy amplification
• Mallory may have some information about the secret bits
• “distill” these bits a shorter key so Mallory has only negligible information

• Require fewer check bits
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Security of QKD

• Key is statistically independent from Mallory’s observations
• cannot be broken by trying more keys or future cryptanalysis
• can be broken by exploiting discrepancies between hardware and model

• Use key as one-time pad + statistical MAC:
• security independent of any computational assumptions

• Use key in computational (symmetric) cryptography
• breaks only if the computational cryptography breaks
• (this is often done because of the low key-rate of QKD)
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QKD authentication

• Authentication typically done with statistically secure MACs
• but then we assume shared keys
• so it’s not key distribution, so much as it is key expansion

• and we have to discard some key material
• consumed keys can be replaced with fresh QKD output
• requires some care to prevent key exhaustion (by Mallory)

• However, we can authenticate with computational MACs or signatures
• if authentication isn’t broken now,

then the output key will never be broken later
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QKD limitation

• QKD is a point-to-point protocol
• Single photon travel distance in fiber/free-space is limited
• up to hundreds of kilometer (<100 km in practice)
• but key-rate drops with larger distance

• No repeaters allowed
• You cannot measure and resend the qubits (for the same reason Mallory can’t)
• quantum repeaters theoretically exist, but require stable quantum memory
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Trusted repeater network

• Meet Alice, Bob, Carroll, and David
• Each neighbouring pair is linked via QKD
• They trust each other, which means …
• … they follow the protocol specification
• … throw away keys after they have been used
• … take care of their devices and keep out hackers/three letter agencies
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QKD QKDQKD

34 35

36 37

40 41
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QKD QKD QKD

Key relay

𝐾𝐴𝐵 𝐾𝐴𝐵 , 𝐾𝐵𝐶 𝐾𝐵𝐶 , 𝐾𝐶𝐷 𝐾𝐶𝐷

𝐾𝐴𝐵

𝐾𝐴𝐵 ⊕𝐾𝐶𝐷

“Please relay our key to Dave”
𝐾𝐴𝐵⊕𝐾𝐵𝐶

𝐾𝐴𝐵
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QKD QKD QKD

Key relay

𝐾𝐴𝐵 𝐾𝐴𝐵 , 𝐾𝐵𝐶 𝐾𝐵𝐶 , 𝐾𝐶𝐷 𝐾𝐶𝐷

𝐾𝐴𝐵 ⊕ KDF(𝑘𝐴, 𝑘𝐷)

𝐾𝐴𝐵 ⊕𝐾𝐶𝐷

“Please relay our key to Dave”
𝐾𝐴𝐵⊕𝐾𝐵𝐶

𝑘𝐴, 𝑐𝑡𝐴 = KEM(𝑝𝑘𝐷) 𝑘𝐷 , 𝑐𝑡𝐷 = KEM(𝑝𝑘𝐴)

𝐾𝐴𝐵 ⊕ KDF(𝑘𝐴, 𝑘𝐷)

𝑐𝑡𝐴

𝑐𝑡𝐷

Key Management Server
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• Apps live within secure site

• QLL manages QKD protocols
• KM caches keys
• QNL relays between neighbours
• SDN determines routes

Key manager
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• KM Main goal: synchronizing keys
• incoming keys are split ~50/50
• we can always take from `ours`
• we only take from `theirs` if instructed

• Multiple links per node
• Bob is linked to Alice
• Bob is linked to Carroll

• Multiple providers per link
• Alice and Bob may run multiple QKD 

protocols to increase bandwidth
• Authenticate using MACs

• use fresh key for confirming fresh output
• use confirmed keys for other messages

Eindhoven QKD testbed – phase 1
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Eindhoven QKD testbed – phase 2
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Eindhoven QKD testbed – phase 3

Cryptography and Quantum Key Distribution49

Phase 4?
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Thank you
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Slides are available online:
https://zeroknowledge.me/talks/#iotalentum22

s.r.verschoor@tue.nl

Quantum information (slightly beyond the bare minimum)

A qubit is a binary state of a quantum system

0 =
1
0

1 =
0
1

+ =
1/ 2

1/ 2
=

1

2
(|0⟩ + 1 )

− =
1/ 2

1/ 2
=

1

2
(|0⟩ − 1 )

Generally 𝜓 = 𝛼 0 + 𝛽|1⟩, with 𝛼 2 + 𝛽 2 = 1
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1

0

+−
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1

0

+−

The dual vector of 𝜓 is 𝜓 = 𝛼∗, 𝛽∗ (the conjugate transpose)

Then 𝜙 𝜓 = 𝜙 ⋅ 𝜓 is an inner product.

If we measure 𝜓 in computational basis {|0⟩, |1⟩},
then 𝜓 is destroyed and we get an output label 𝑥:

Pr 𝑥 = 0 = 0 𝜓 2

Pr 𝑥 = 1 = 1 𝜓 2

Similarly if we measure in Hadamard basis {|+⟩, |−⟩}:
Pr 𝑥 = 0 = + 𝜓 2 and Pr 𝑥 = 1 = − 𝜓 2

Example: if we measure 𝜉 (see picture) in either basis,

we get output label 0 with probability 
2+ 2

4
≈ 0.85

Quantum information (slightly beyond the bare minimum)

𝜉
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QKD QKD QKD

Key relay (alternative)

𝐾𝐴𝐵 𝐾𝐴𝐵 , 𝐾𝐵𝐶 𝐾𝐵𝐶 , 𝐾𝐶𝐷 𝐾𝐶𝐷

𝐾𝑅

𝐾𝐵𝐶 ⊕𝐾𝐶𝐷

𝐾𝐴𝐵 ⊕𝐾𝐵𝐶

𝐾𝑅 = 𝐾𝑅 ⊕𝐾𝐴𝐵 ⊕ 𝐾𝐴𝐵 ⊕𝐾𝐵𝐶
⊕ 𝐾𝐵𝐶 ⊕𝐾𝐶𝐷 ⊕𝐾𝐶𝐷

𝐾𝑅 ⊕𝐾𝐴𝐵
𝐾𝑅 ←

49 50

51 52
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