Garbled Circuits

- Garbling as a goal, not a technique
- Garbling scheme
- Fit existing literature in the framework
- Examples: Garble1/Garble2
- Goal:
 - More efficient construction
 - More rigorous analyses
 - More modular design

Circuit

- $f = (n, m, q, A, B, G)$
- f is both an encoding of a function and the function itself
 - $ev(f, x) = f(x)$

Security

- $\Phi(f)$: side-information on f
- $\Phi_{\text{size}}(f) = (n, m, q)$
- $\Phi_{\text{topo}}(f) = (n, m, q, A, B)$
- $\Phi_{\text{circ}}(f) = (n, m, q, A, B, G) = f$
- Privacy
 - (F, X, d) reveals nothing beyond $\Phi(f)$ and y
- Obliviousness
 - (F, X) reveals nothing beyond $\Phi(f)$
- Authenticity
 - Given F, X, adversary is unable to produce Y^*, s.t.
 $d(Y^*) \neq \bot$
Indistinguishability (privacy)

\[b \in \{0, 1\} \]

\[(f_0, f_1, x_0, x_1) \]

\[(F, e, d) \leftarrow \text{Gb}(f_b) \]

\[X \leftarrow \text{En}(e, x_b) \]

\[F, X, d \]

\[b = b' \]

Indistinguishability (obliviousness)

\[b \in \{0, 1\} \]

\[(f_0, f_1, x_0, x_1) \]

\[(F, e, d) \leftarrow \text{Gb}(f_b) \]

\[X \leftarrow \text{En}(e, x_b) \]

\[F, X \]

\[b = b' \]

Simulation (privacy)

\[b \in \{0, 1\} \]

\[(f_0, e, d_0) \leftarrow \text{Gb}(1^k, f) \]

\[X_0 \leftarrow \text{En}(e, x) \]

\[y \leftarrow \text{ev}(f, x) \]

\[F_0, X_0, d_0 \]

\[b = b' \]

Simulation (obliviousness)

\[b \in \{0, 1\} \]

\[(f_0, e, d_0) \leftarrow \text{Gb}(1^k, f) \]

\[X_0 \leftarrow \text{En}(e, x) \]

\[y \leftarrow \text{ev}(f, x) \]

\[F_0, X_0 \]

\[b = b' \]

Authenticity

\[f, x \]

\[(F, e, d) \leftarrow \text{Gb}(f) \]

\[X \leftarrow \text{En}(e, x) \]

\[F, X, Y \]

\[\text{De}(d, Y) \neq \bot \]

Security relations

- GS(\text{priv.sim}, \Phi) is the set of all garbling schemes that are privacy simulation secure over \Phi.
- similar for \text{priv.ind}, \text{obv.sim}, \text{obv.ind}
- similar for aut, but without \Phi.

\[\Phi \]
Efficient invertibility

- \(M \) is a \(\Phi \)-inverter if
 - \(M(\phi) \) returns \(f \) s.t. \(\Phi(f) = \phi \)
- \(M \) is a \((\Phi, \text{ev})\)-inverter if
 - \(M(\phi, y) \) returns \((f, x)\) s.t. \(\Phi(f) = \phi \) and \(\text{ev}(f, x) = y \)
- Efficient inverters do it in polynomial time

Rest of the paper

- Proofs for the other drawn security relations
- Garble1
 - Definition
 - Dual-key ciphers
 - Proof of security (priv.ind over \(\Phi_{\topo} \))
- Garble2
 - Definition
 - Proof of security
 - priv.ind over \(\Phi_{\topo} \Rightarrow \text{priv.sim} \)
 - obv.ind over \(\Phi_{\topo} \Rightarrow \text{obv.sim} \)
 - aut
- Casting existing schemes to the GS framework
 - Secure function evaluation (SFe)
 - Private function evaluation (PFE)

Thank you

Any questions?