
02 July 2012 | 1

Sebastian Verschoor

Supervisors:

› prof. dr. Gerard R. Renardel de Lavalette

› prof. dr. Wim H. Hesselink

Bachelor Project 2012

Analysis of the Euclidean Feature
Transform algorithm

 | 202 July 2012

Table of Contents

› Project Goal
› Explaining the EFT
› Mechanical Verification
› Project Progress
› Evaluation
› Questions

 | 302 July 2012

The project goal

› The goal of this bachelor project is to mechanically
verify (or even disprove) that the algorithm as posed
by Hesselink [1] correctly calculates the Euclidean
Feature Transform (EFT), and does so in linear time
complexity.

› Mechanical Verification > Mathematical Proof

 | 402 July 2012

The Euclidean Feature Transform (EFT)

 | 802 July 2012

The EFT algorithm

› The algorithm uses some clever tricks
• Iterating the dimensions, using the same algorithm

for solving the base case and the inductive step

› Reduces the problem to finding the one-dimensional
EFT

› O(n) (n number of "pixels")

 | 902 July 2012

The EFT algorithm
OneFT(n, h):

q 0; t[0] 0; at[0] 0← ← ←

for (k 1; k < n; k++)←

while (q ≥ 0 f (t[q], at[q]) > f (t[q], k))∧

q q - 1←

if (q < 0)

q 0; at[0] k← ←

else

w 1 + g(at[q], k)←

if (w < n)

q q+1←

t[q] w; at[q] k← ←

t[q+1] n; at[q+1] n − 1← ←

for (j 0; j = q; j++)←

x1 t[j+1] – 1←

for (x t[j]; x = x1; x++)←

FT[x] {at[j]}←

for (p at[j] + 1; p = at[j+1]; p++)←

if (f (x1, p) = f (x1, at[j]))

FT[x1] FT[x1] {p}← ∪

 | 1002 July 2012

Mechanical Verification

› Prototype Verification System (PVS 5.0)
• SRI International, Computer Science Laboratory

› Specification Language
› Interactive Prover

 | 1102 July 2012

PVS Specification Language

› Based upon simple typed logic
› Formal specification of the problem

• Types
• Definitions
• Theorems / Lemmas

 | 1502 July 2012

PVS Prover

› Proof obligation
• Logical sentence:

P0 P∧ 1 … P∧ ∧ m Q⇒ 0 Q∨ 1 … Q∨ ∨ n

› Proof commands
• Rewrite proof obligation to a logical equivalent

statement

› The Prover does not prove anything!
• It is merely keeps a "smart" administration

 | 1802 July 2012

PVS Prover - Example

 | 1902 July 2012

Program Correctness

› programs.pvs
• Hoare-Triplets:

• {P} S {Q}
• While loops

• 5 steps
• Prove correctness and termination

 | 2202 July 2012

Project Progress (done)

› Learning PVS
• Basics of the master course Automated Reasoning

› Understanding the algorithm
› Verified the mathematics
› The algorithm

• Proved on paper
• Specified in PVS

› 118 theorems/lemmas
• 91 proven

 | 2302 July 2012

Project Progress (todo)

› Prove the algorithm
• With PVS

› Optional: prove the mathematics behind iterating the
dimensions

› Write thesis

 | 2402 July 2012

Evaluation

› Mechanically verifying a problem does not result in a
deeper understanding of a problem
• It does require a full understanding of the problem

› PVS is a great tool for proving complex mathematical
theorems
• But, often it feels like you do a lot of trivial work

that could somehow be automated

02 July 2012 | 25

Thank you for your attention

Are there any questions?

 | 2602 July 2012

References

[1] W. H. Hesselink, “Distance transforms and feature
transform sets,” May 2009. An extension and
modification of the IPL paper.

