
(In-)Secure messaging with the Silent Circle instant
messaging protocol

Sebastian R. Verschoor
David R. Chariton School of Computer Science

and Institute for Quantum Computing,
University of Waterloo

srverschoor@uwaterloo.ca

Tanja Lange
Department of Mathematics and Computer
Science, Technische Universiteit Eindhoven

tanja@hyperelliptic.org

ABSTRACT
Silent Text, the instant messaging application by the com-
pany Silent Circle, provides its users with end-to-end en-
crypted communication on the Blackphone and other smart-
phones. The underlying protocol, SCimp, has received many
extensions during the update to version 2, but has not been
subjected to critical review from the cryptographic commu-
nity. In this paper, we analyze both the design and imple-
mentation of SCimp by inspection of the documentation (to
the extent it exists) and code. Many of the security prop-
erties of SCimp version 1 are found to be secure, however
many of the extensions contain vulnerabilities and the im-
plementation contains bugs that affect the overall security.

These problems were fed back to the SCimp maintainers
and some bugs were fixed in the code base. In Septem-
ber 2015, Silent Circle replaced SCimp with a new protocol
based on the Signal Protocol.

Keywords
SCimp, Silent Circle, Instant Messaging Protocol

1. INTRODUCTION
Blackphone by Silent Circle is an Android-based smart

phone running the Silent OS operating system, with cur-
rent versions (Blackphone 2) selling at a hefty 799 USD.
The phone promises its users higher security and privacy:
“Blackphone puts privacy first”. The Blackphone 1, costing
more than 600 USD, was rolled out in summer 2014 and
came with service subscriptions for encrypted phone (Silent
Phone) and chat (Silent Text). Silent Circle’s “Products and
Solutions” page [25] advertised Silent Text as

Share unlimited encrypted texts on any Silent
OS, iOS or Android device. Use the burn feature
to set messages to automatically self-destruct af-
ter a set time period. Silent Text also offers
secure file transfers of up to 100MB and voice
memo functionality.

Silent Text was available for free on Apple’s App store (since
2012) and on Google Play (since 2013) but users needed to
buy a subscription for using the servers, with prices starting
at 9.95 USD per month. Given these prices one could expect
some security analysis of the services, but only after an in-
tense online discussion, started by Zooko Wilcox-O’Hearn’s
open letter to Phil Zimmermann and Jon Callas [31], did
Silent Circle post source code for Silent Text for iOS on
GitHub [27] allowing inspection of their code base. We are
not aware of any public analysis of SCimp.

1.1 History of SCimp
Silent Text uses XMPP for transportation and adds a

crypto layer to generate shared keys between communicating
parties. Messages are passed (and temporarily stored if nec-
essary) by Silent Circle’s server. Instead of deploying OTR,
the Off-The-Record protocol [6] by Borisov, Goldberg and
Brewer, Silent Circle started from SecureSMS, introduced
in Belvin’s masters’ thesis [3], and adapted it to the XMPP
setting. The resulting protocol by Moscaritolo, Belvin, and
Zimmermann from 2012 is called SCimp: “Silent Circle in-
stant messaging protocol”. SCimp is described on Silent Cir-
cle’s web page [24] and in a white paper [21]; some source
code and explanations are available on GitHub. In 2014
Silent Text 2.0 was rolled out [20] “to improve the security
and refine the user experience of our customers”. This up-
date changes how parties provide keys, most importantly it
allows Alice to start a communication with an offline Bob,
and added functionalities for group messaging and encrypted
file storage.

1.2 Advertised security properties
SCimp is designed to provide end-to-end encryption in

such a way that no intermediary—such as the Silent Circle
server—needs to be trusted in order for the communication
to be secure. SCimp supports erasure of old keys, so that
a potential device compromise does not leak old messages
(which is also known as forward secrecy), by updating the
encryption key for every message and rekeying every once
in a while. The protocol allows for deniability of all com-
munication, which means that nobody, including the users
Alice and Bob themselves, can provide any proof to con-
vince a third party about what was said over SCimp or even
provide any proof that a conversation took place in the first
place. The last important property of SCimp is that it pro-
vides future secrecy through key continuity: an attacker
that compromises key material shared between users, but
misses the opportunity to set up a man-in-the-middle at-
tack during rekeying, cannot decrypt future messages. This
property is advertised as the “self-healing property”.

1.3 Results
SCimp version 2 was in use since May 2014 [20], but the

details have only been released in August 2015 [27], and then
only upon our request. Our paper shows that the update in-
troduced new vulnerabilities, most remarkably that a man-
in-the middle attacker Eve can arbitrarily delay authenti-
cation between Alice and Bob and thus remain undetected.
Eve can also easily interrupt communications and force a

new key exchange, which she then can man-in-the-middle.
This interruption also destroys the advertised self-healing
property of key continuity (version 1 and 2).

Due to the insufficient level of documentation (or close
to none in the case of SCimp version 2), code review was
necessary, though tedious. The implementation of SCimp
provided on GitHub had several implementation errors, in-
cluding cryptographic errors. The SCimp version 2 imple-
mentation defines a state machine that leaves the protocol
vulnerable to an undetectable man-in-the-middle attack. In
addition, the way the state machine is often bypassed in
the code leaves the implementation vulnerable to another
man-in-the-middle attack.

1.4 Disclosure and updates
Throughout this study we have communicated with Jon

Callas and Vinnie Moscaritolo from Silent Circle. In Septem-
ber 2015, Silent Circle announced [26] that they will stop
Silent Text on September 28 and change to a messaging ap-
plication integrated with an updated Silent Phone app which
would be based on the Signal Protocol [13]. Jon Callas con-
firmed that we may say that our analysis motivated their
decision to switch. The switch takes care of most of our
concerns reported in Section 3 and Section 5, and possibly
(but not necessarily) Section 4.

2. PROTOCOL DESCRIPTION
This section presents the SCimp protocol and explains the

design rationale. We base our analysis on the Silent Circle
documentation provided in [21] and [19]. A comparison with
the code—showing several inconsistencies—is given in Sec-
tion 5. The reason for the high level of detail in the protocol
description is that the official documentation lacks the re-
quired details for proper cryptographic analysis.

SCimp version 1 has two modes of which one, basic Diffie-
Hellman (DH) mode, provides encryption. Users do not have
certified long-term keys. The protocol uses an ephemeral
DH key exchange (explained in Section 2.1) to establish a
shared key between two devices. After key negotiation, users
need to verify the identity of the other party by confirming a
short authentication string (SAS) out-of-band. Sessions are
not time limited, so for enhanced security, the users period-
ically need to renegotiate their keys, which is explained in
Section 2.2. SCimp uses the derived keys to perform authen-
ticated encryption to provide confidentiality and integrity of
the messages, as explained in Section 2.3.

The main goal of SCimp version 2 is to enhance usabil-
ity of the protocol. One problem with the first version is
that the users need to do a complete DH exchange before
they can send the first message. In the asynchronous envi-
ronment of mobile devices, this can introduce a big delay.
To solve this, Silent Circle introduced “Progressive Encryp-
tion” (DHv2 mode). In this mode the Silent Circle server
also serves as a key server; users have a medium-term DH
key pair of which they upload the public key to the server.
When Alice wants to send a message to Bob, she downloads
his key and derives key material for encryption of the first
message, but she also initiates a parallel key negotiation as
in basic DH mode. When that key negotiation completes,
both users verify each others identities and thereby confirm
that all communication so far has been secure. This mode
is explained in Section 2.4. Version 2 also introduces group
messages (explained Section 2.5), which require two more

SCimp modes: PubKey mode and Symmetric mode.

2.1 Key negotiation
Alice and Bob are both registered by their XMPP ad-

dresses: A = “alice@silentcircle.com/blackphone” and B =
“bob@silentcircle.com/android”. Without loss of generality,
we assume that Alice initiates the key negotiation with Bob.

It is not specified how Alice and Bob learn each others
XMPP addresses. Alice needs to know the address (B′), to
which she wants to send a message. When Bob receives the
first message, he can extract the sender address (A′) from
the stanza. For the analysis, we assume that these addresses
are not authenticated, meaning that Alice does not know if
B′ = B and Bob does not know if A′ = A.

The initial key negotiation is basically an ephemeral elliptic-
curve Diffie-Hellman key exchange (ECDHE) with a subse-
quent confirmation of knowledge of the derived shared se-
cret. It consists of four messages:

1. Alice commits to her public DH key in the Commit
message.

2. Bob sends his public DH key in the DH1 message.

3. Alice opens her commitment and confirms knowledge
of the shared secret in the DH2 message.

4. Bob confirms knowledge of the shared secret in the
Confirm message.

The key negotiation is depicted in Figure 1, with some
details omitted for brevity.

2.1.1. Commit. Alice, as initiator, starts by computing
an ephemeral secret key for her DH key pair, which is a
random key ska. She computes the public key of her DH
key pair pka = skaG, where G is a fixed base point on the
elliptic curve.1 Alice commits to point pka by computing
hash(pka), where hash is a hash function.

If Alice and Bob have negotiated keys before, they share
a cached secret (cs). They use this value in subsequent key
negotiations in order to authenticate to each other. When
they do not yet have a shared cs, they substitute cs with
a random value and skip the corresponding validations and
they authenticate later (see Section 2.1.5).

Alice proves knowledge of cs by sending hcsa: a Message
Authentication Code (MAC) using cs as the key. Alice also
sends protocol options (in plaintext), such as the crypto-
graphic cipher suite and the method for verifying the SAS.

2.1.2. DH1. Upon receiving the Commit message, Bob
validates the correctness of the received value hcsa (or ig-
nores it if he shares no cs with Alice) and stores hash(pka)
for later validation. If hcsa is incorrect, the application gives
a warning and continues the protocol. He generates his own
DH key pair, with the random scalar skb and public key
pkb = skbG. Bob sends his reply (DH1) to Alice, containing
the value pkb and hcsb.

2.1.3. DH2. After validating hcsb (or ignoring it in the
first key negotiation), Alice now has enough information to
complete the DH key exchange. First, she checks if the point

1The curve details do not matter for this analysis, version 1
uses NIST P-384.

..

Alice

.
⟨initiator⟩

.

Bob

.
⟨responder⟩

.

ska = rand()
pka = skaG
hcsa = MACcs(hash(pka), “Initiator”)

.

Commit

.

options, hash(pka),hcsa

.

validate hcsa

skb = rand()
pkb = skbG
hcsb = MACcs(hash(pkb), “Responder”)

.

DH1

.

pkb, hcsb

.

validate hcsb

Z = skapkb

htotal = hash(Commit, DH1, pka)
extract(htotal, Zx) : kdk
enhance(A, B, htotal, cs) : kdk2

expand(kdk2) : maca

.

DH2

.

pka,maca

.

validate hash(pka) with Commit
Z = skbpka

extract/enhance kdk2 same as Alice
expand(kdk2) : ksnd,0, krcv,0, isnd,0, ircv,0, maca,
macb, SAS, cs1
validate maca

.

Confirm

.

macb

.

expand(kdk2) : ksnd,0, krcv,0, isnd,0, ircv,0, maca,
macb, SAS, cs1
validate macb

.

Keys negotiated

..

Confirm SAS

.

Out of band

.

Authenticated

.

Figure 1: SCimp: key negotiation

she received is a valid point on the curve. Next, she com-
putes shared secret Zx, which is the x-coordinate of point
Z = skapkb on the elliptic curve.

From this value, all other key material is derived using
a three-step process. It is adapted from a standard two-
step process for creating a Key Derivation Function (KDF):
Extract-Expand [9, 17]. An additional Enhance step is added
between the steps.

Extract/Enhance/Expand. Keys are derived inside
the extract/enhance/expand steps using a MAC function

that is labeled KDF.2 Let KDFk(label, context, L) =
MACk(0x00000001 ‖ label ‖ 0x00 ‖ context ‖L), where L spec-
ifies the output length of the key in bits.

The output of the MAC is truncated to the L leftmost
bits. The first argument, 0x00000001, is a counter that is
required by NIST SP 800-108 [9]; if more bits would need
to be extracted, this counter would be incremented. The
KDF sets a label to describe what the key is used for and a
context parameter that can be the same for all keys that are
derived. In the extract step, a seed htotal is computed and
a key derivation key is derived: kdk = MAChtotal(Zx). For
unexplained reasons, the protocol computes two context val-
ues, a context variable ctx = len(A) ‖A ‖ len(B) ‖B ‖htotal

and a session variable sess = hash(len(A) ‖A ‖ len(B) ‖B).
The enhance step is just another extract step: it mixes in

the cached secret cs, if such a value is shared between the
users: kdk2 = KDFkdk(“MasterSecret”,“SCimp-ENHANCE”
‖ ctx ‖ cs, 256).

The expand step derives multiple keys from kdk2, all serv-
ing different purposes. This is done by computing the KDF
with key kdk2. Before the DH2 message, only maca =
KDFkdk2(“InitiatorMACkey”, ctx, 256) is derived (and kdk2

is stored for later use).
Alice sends pka, to open up the commitment, and maca,

to prove that she was able to complete the DH computation.
She can now erase the ephemeral value ska from her device.

2.1.4. Confirm. Upon receiving the DH2 message, Bob
validates that pka matches the commitment hash(pka) and
is valid. After this verification, he completes the DH com-
putation Z = skbpka.

By the same extract/enhance/expand steps, Bob derives
all the necessary keys. Bob expands kdk2 into all keys that
are required for further communication. The keys ksnd,0 and
krcv,0 are used to send and receive messages (see also Sec-
tion 2.3). Bob sets ksnd,0 = KDFkdk2(“ResponderMasterKey”,
ctx, 2l), where l is determined by the key size of the sym-
metric cipher of the cipher suite. Bob uses ksnd,0 to en-
crypt and authenticate messages to Alice. Bob sets krcv,0 =
KDFkdk2(“InitiatorMasterKey”, sess, 2l) to decrypt and vali-
date messages from Alice. Alice computes the same values,
but of course swaps the snd and rcv labels.

Note the earlier mentioned asymmetry in the derivation
of ksnd,0 and krcv,0: without justification, the former uses ctx
and the latter sess as context parameter to the KDF.

To identify which key should be used to decrypt the mes-
sage, an index is attached to each user message. Bob ini-
tializes ircv,0 = KDFkdk2(“InitiatorInitialIndex”, sess, 64) and
isnd,0 = KDFkdk2(“ResponderInitialIndex”, sess, 64). The in-
dices are necessary when messages are dropped or are arriv-
ing out of order.

The cached secret cs1 = KDFkdk2(“RetainedSecret”, ctx, 2l)
is derived to ensure key continuity. The computed value can
be used in future key negotiations to authenticate to the
other party. In order to prevent a denial of service (DOS)
attack, the client replaces the stored value of cs with cs1
only after the mac of the other party is verified.

After key generation, Bob compares the computed value
of maca with the received value. If the values match, Bob is

2The standards suggest that instead of just the expand func-
tion, the entire extract/enhance/expand construction con-
stitutes the KDF and it should have been named accord-
ingly. Throughout this paper, we use the Silent Circle nota-
tion in order to match the specification.

convinced that Alice was able to complete her side of the DH
exchange. He stores the required keys, updates his cached
secret cs to cs1 and is ready to communicate with Alice.

Bob now responds with the Confirm message, consisting
of macb = KDFkdk2(“ResponderMACkey”, ctx, 256). He can
erase all intermediary keys from his device, such as skb, Z,
kdk and kdk2.

Upon receiving the Confirm message, Alice expands the
rest of the key values from kdk2 and compares her computed
value of macb with the received one. When they match, she
updates her cached secret cs to cs1, deletes all intermediary
keys from her device and is ready to communicate with Bob.

2.1.5. Short authentication string. At this stage in
the protocol, Alice and Bob have the necessary keys to start
sending data and indeed they can start messaging. How-
ever, it is better for them to verify the identities of their
communication partner first. The key exchange so far has
been done using only ephemeral keys, so setting up a man-
in-the-middle attack is trivial for an adversary with sufficient
control over the network. The solution by Silent Circle is the
short authentication string (SAS). The method for display-
ing the SAS to the user and the length of the SAS depends on
the sasMethod option (sent in the Commit message) which
determines the length and how the SAS is compared by Alice
and Bob.

Alice and Bob both know SAS = KDFkdk2(“SAS”, ctx, 20)
at this stage. They need to set up an out-of-band connec-
tion on which they can authenticate each other before they
start comparing their SAS values. According to Silent Cir-
cle [21] “[a] phone call would be sufficient for this purpose
since confidence building cues such as voice timbre and man-
ner of speech are present.”

Silent Circle is not specific on what it means to verify
the SAS. The fact that this action should result in mutual
authentication, suggests that both parties will have to read
half of the SAS code that is displayed to them. However,
without very precise instructions, the users might verify us-
ing a subtly different method and not detect that they are
the victim of a man-in-the-middle attack.3

2.1.6. Reasons for the commit value. The SAS is a
short code, typically 20 bits. Therefore, the protocol re-
quires the hash commitment, which forces the adversary to
select a public key without knowing the key of the other
party. Without commitments, the adversary could acquire
the public keys of the honest parties before searching for cor-
responding keys that would result in a SAS collision. Such
a collision would result in an undetected man-in-the-middle
attack. This is displayed in Figure 2. The Commit message
ensures that an adversary can have only one blind guess for
his public key.

3For example, assume that Eve sets up a man-in-the-middle
attack on the SCimp connection of Alice and Bob. Further
assume that Eve has some control over the voice channel that
they use to verify the SAS (not unlikely in case of a phone
call). Eve lets Alice and Bob talk until they are convinced
they are talking to each other but degrades the quality. She
then sends both participants a message over SCimp to speak
out the full SAS. When Alice says the SAS, Eve (temporar-
ily) mutes the audio for Bob. Eve confirms to Alice that
the SAS is correct, which she can do with a message over
SCimp, or maybe she has a recording of Bob saying “OK”.
She can repeat the trick with Bob. More ways to circumvent
SAS authentication are described in [23].

..

Alice

..

Eve

..

Bob

..

pka,e

.

pke,b

.

pkb,e

.

find pke,a such that
DH(pka,e,pke,a) and DH(pke,b, pkb,e)
result in the same SAS

.

pke,a

..

Confirm SAS

.

Out of band

.

Figure 2: Man-in-the-middle attack on (hypotheti-
cal) key negotiation without commit value

2.2 Rekeying
If the participants have negotiated keys before, they share

a cached secret (cs), derived from kdk2. This secret is used
for key continuity, meaning that future keys will depend on
this value and thus depend upon previous keys. When Alice
wants to derive a new key, she initiates the same process as
for the initial key negotiation.

If the received value of hcs is invalid, a warning is issued
to the user that the identity of the other party is no longer
verified. The protocol continues as if it was the first key
negotiation. That also means that the SAS needs to be
confirmed again to ensure that no man-in-the-middle attack
is in progress. The reason that the protocol does not abort
is that an honest user could lose their copy of the cs, for
example, due to a device reset or loss of connection when
Bob has updated cs but Alice has not.

2.2.1. Key erasure. Whenever new keys are negotiated
successfully, these keys will depend upon the old keys, but
this is a one-way process. The old keys cannot be derived
from the new keys. The KDF, MAC and hash functions are
all one-way functions and fresh randomness is introduced in
both values of sk. When the old keys are erased, a compro-
mise of key material does not compromise the security of old
messages.

The protocol specification provides only partial informa-
tion to detect how many (if any) messages have not arrived
yet when user messages may arrive out of order. See Sec-
tion 3.5 for how this is handled in the implementation and
how this affects key erasure.

2.2.2. Future secrecy. Although it is not documented
when keys should be renegotiated, for future secrecy it is
important that this happens often. The SCimp ratchet (see
Section 2.3) derives each message key directly from the pre-
vious one, so when one message key gets compromised, all
following message keys are compromised as well, until new
keys are negotiated with the rekeying protocol.

An attacker that has compromised the message keys from

one participant, but does not have access to either ska or
skb that is used in key renegotiation, will no longer have any
knowledge of the freshly generated keys.

On the other hand, compromising the current value of cs is
enough for an adversary to set up an undetected man-in-the-
middle between the participants. However, as soon as the
adversary misses one key negotiation, cs is replaced with a
fresh value. The participants will receive a warning that the
old values of cs did not match, so they will have to reconfirm
the SAS. Additionally, even when an undetected man-in-
the-middle attack is in progress, the participants should be
able to detect this by reconfirming the SAS after rekeying.

Silent Circle calls the future secrecy property of rekeying
the “self-healing property”, which is a bit of a misnomer.
Only when the adversary misses the first rekeying, will the
protocol self-heal. If the adversary has already successfully
set up a man-in-the-middle attack in the past and then
misses one rekeying, the protocol only detects the error, but
does not self-heal. “Healing”requires a new SAS verification.

The important part for future secrecy is that the adver-
sary misses the key negotiation. When users communicate
over the internet, it might be easy for an adversary to inter-
cept all communication, especially if all messages are routed
via a single node, such as the Silent Circle server. Because
the protocol does not rely on the underlying transportation
layers, it should be possible for two participants to do a full
key negotiation out-of-band. For example, when they phys-
ically meet, they could exchange the key messages using
near field communication (NFC) or by scanning QR-codes.
This would make it very unlikely that a man-in-the-middle
is present, giving the users a guarantee that future com-
munication is secure and giving them the ability to detect
whether past communication was secure. We are unaware
of such a functionality in Silent Text or Blackphone.

2.2.3. Commit contention. Two participants might try
to initiate a key negotiation at the same time. According to
the SCimp white paper, the protocol will then flag an error
and let the application decide what to do. The suggestion
they give is to compare the values of the hash commitments
and let that comparison decide which participant becomes
initiator and which becomes responder.

2.3 Sending User messages
When both sender and receiver have derived the keys,

they can start sending messages, see Figure 3. Messages are
encrypted with AES in CCM-mode (Counter with CBC-
MAC) [30]: ct = AES CCMN

k (header, pt) providing Au-
thenticated Encryption with Associated Data (AEAD). That
means that besides encrypting and authenticating plaintext,
the mode also accepts a header (Associated Data) that is au-
thenticated, but not encrypted. CCM also requires a nonce
N that is unique per encryption key k.

CCM encryption is specified as follows: first compute a
CBC-MAC over N , the header and plaintext pt, resulting in
an authentication tag T . Concatenate pt ‖T and encrypt it
in counter mode, using N to initialize the counter, resulting
in ciphertext ct.4

In case of SCimp, the key k and the nonce N are set to
the value of ksnd,j , split into two equal-sized halves. For

4The actual specification is more convoluted, including
authentication of lengths and data encoding instructions.
See [12] for further details.

..

Alice

.
⟨sender⟩

.

Bob

.
⟨receiver⟩

.

(eka, na) = split(ksnd,j)
ctj = AES CCMna

eka
(isnd,j , ptj)

ksnd,j+1 = KDFksnd,j
(“mk”, sess, isnd,j)

isnd,j+1 = isnd,j + 1

.

LSB16(isnd,j), ctj

.

find ircv,j and corresponding krcv,j

(eka, na) = split(krcv,j)
ptj = verify-decryptna

eka
(ircv,j , ctj)

.

Figure 3: SCimp: data exchange

the header value, SCimp uses the full 64-bit value of index
isnd,j . In order to achieve key erasure, the key is updated
with every message that is sent.

Each send/receive key is derived from the previous one
with the SCimp ratchet, which is implemented as follows:
kx,j+1 = KDFkx,j (“MessageKey”, sess ‖ ix,j , l), where x ∈
{snd, rcv}.

The index must be ratcheted forward as well, this is done
simply by addition: ix,j+1 = ix,j + 1.

Besides ciphertext ct, Alice also sends the 16 least signifi-
cant bits of the send index isnd,j , which Bob can use to find
the correct key for the message.

2.3.1. Receiving. Upon receiving the message, Bob in-
spects the sent index to retrieve the corresponding key. The
specification does not state how many old keys to keep in
memory. We note that these stored keys not only compro-
mise the secrecy of the messages that have not been received
yet, but also that of all subsequent messages, because the
keys corresponding to those messages can be derived from
the stored keys.

2.4 Progressive Encryption
The problem with SCimp version 1 is that it requires both

participants to be online in order to complete a key ex-
change. This is not always the case, even if both devices are
on. For example, the iPhone puts applications to sleep and
disconnects them from the network after a short time when
they are not in the foreground. This includes the times the
device is in a locked state. The upside is that this reduces
battery usage.

The downside is that a background application cannot re-
ceive and send the messages required for the key negotiation.
If Alice sends a Commit message to Bob, who happens to
be “offline”, he does not receive the message immediately.
Instead, Alice always sends her message to the Silent Cir-
cle server, which then sends a push message to Bob (either
via Apple Push Notifications (APN) [2] or Google Cloud
Messaging (GCM) [14] for iPhones or via GCM for Android
devices). When Bob’s device is “online”, it simply down-
loads the message from Silent Circle, but when Bob’s device
is “offline”, it will display a notification to Bob, who can put
the application in the foreground so that it can receive and
send the required messages.

..

Alice (A)

.
⟨initiator⟩

.

Silent Circle

.
⟨server⟩

.

Bob (B)

.
⟨responder⟩

.

B, pkB , idpkB

.

B

.

pkB , idpkB

.

sk0 = random()
pk0 = sk0G
Z0 = sk0pkB

extract/enhance/expand
ska = random()
pka = skaG
ct = AES CCMk0(i0, pt)

.

PKStart

.

options, idpkB
, pk0, hash(pka), ct

.

DH1

.

DH2

.

Confirm

.

Keyed (from pk0 and pkB): Alice and Bob can send data

.

Keyed (from pka and pkb)

..

Confirm SAS

.

Out of band

.

Authenticated

.

Figure 4: SCimp: Progressive Encryption

In the delay that was introduced because of this, Alice’s
device might have gone offline again, introducing more delay
when receiving the DH1 message. In total, four key nego-
tiation messages (containing no user input) need to be sent
back and forth until Alice can send her first user message.
The resulting process gives a very poor user experience.

To solve this problem, Silent Circle invented a technique
they named “Progressive Encryption”, shown in Figure 4.
The main idea behind this technique is that users upload a
non-ephemeral public key to the Silent Circle server. When-
ever Alice wants to send a message to Bob, she downloads
Bob’s public key from the Silent Circle server. Alice uses
that key to complete a DH key exchange with her own
ephemeral key pk0, from which she derives symmetric key
material, just as she would upon completion of a regular
key negotiation. She encrypts/authenticates her message pt
with the derived symmetric key and can send the ciphertext
ct in the first message. In addition, she also generates an
ephemeral key pair (ska, pka) as if composing a Commit
message. Alice combines pk0, ct, and the Commit message
in one message, labeled PKStart.

Once he gets online, Bob uses pk0 and his medium-term
secret key skB to compute skBpk0 and to decrypt the ci-
phertexts sent so far. Alice and Bob now share key material
and can use it to communicate. But, they should also com-
plete the regular key negotiation. Once they have finished
that key negotiation, they discard the old key material.

Only when Alice and Bob have derived the new key ma-
terial can they compare their values of the SAS and confirm
that no man-in-the-middle was present during any of this.
In order to verify that this is also true for the messages that
were sent before key negotiation completed, the PKStart
message is digested in the value htotal.

2.4.1. Public Key. In order for Alice to be able to send
a message to Bob, Bob needs to have uploaded his pub-
lic key pkB to the Silent Circle server. Attached to the
key that he uploads, is both the owner B and a locator
idpkB = KDFpkB (“SCKey ECC Key”, nonce, 160). It is not
documented where this nonce comes from, but it is very
likely a device specific value. However, it is of no impor-
tance for the security of the protocol, because the value of
the locator is never validated.

A public key also contains a lifetime, indicated by a start
and end date, which is set at a medium term lifetime, so
that it should be updated every 30 days. Public key packets
should be self-signed. Additional signatures are allowed. For
example, a signature by a previous key of the same user adds
a form of key continuity.

2.4.2. PKStart. Alice completes an initial DH key ex-
change with Bob’s public key, from which she derives the re-
quired keys for communication with Bob. This is done in the
same extract/enhance/expand process as in key negotiation,
with the small alteration that the value of htotal is set to zero
in kdk0 = MAC0(Z0,x) and ctx = len(A) ‖A ‖ len(B) ‖B ‖ 0.

The enhance and expand phase are identical. Although
the implementation does derive values for maca, macb, SAS
and cs, these values are not used.

In DH mode (with a Commit message instead of PKStart),
hcs is included in the Commit and DH1 message, so that
an eavesdropper cannot distinguish the first key negotiation
from rekeying by inspection of the message. The PKStart
message is easily distinguished from Commit messages, so
there is no point in sending a value of hcsa anymore. The
value hcsb is still sent in the DH1 message, but it can be
ignored.

After having sent the PKStart message, Alice and Bob can
send more data, similar to how they would send data in a
normal situation (they have to keep forwarding the ratchet).

2.4.3. DH1/DH2/Confirm. In parallel to the data mes-
sages that Alice and Bob can now send, they should also
complete the key negotiation that was initiated by Alice’s
value of hash(pka). The rest of the key negotiation is iden-
tical to that in Figure 1, except for the computation of
htotal = hash(idpkB ‖ pk0 ‖ hash(pka) ‖ ct ‖ pkb ‖ hcsb ‖ pka),
where ct is the ciphertext from the PKStart message.

The presence of idpkB and pk0 in htotal ensures that these
values are mixed into the extract phase of the key derivation.
This ensures key continuity, which in turn ensures that when
the users confirm the SAS, they also confirm the authenticity
and confidentiality of keys derived from Z0,x.

2.5 SCimp group conversations
While SCimp version 1 only allowed for one-to-one con-

versations, SCimp version 2 also enables group conversations
by introducing two more modes: SCimp PubKey mode and
SCimp Symmetric mode. The former is used to set up sym-
metric keys for members of the group, so that they can have
a conversation using the latter mode. Alternatively, Sym-
metric mode can also be set up with a manually provided
initial key.

In order to deliver the multicast messages to all group
members, SCimp uses the XMPP extension XEP-0033 [15]
in the XMPP layer.

2.5.1. SCimp PubKey mode. In order to set up the
SCimp Symmetric mode, the users need to have a shared
symmetric key. They can set this up with SCimp PubKey
mode. This multicast key is encapsulated in a PubData
message (similar to how Siren is encapsulated in SCimp, see
Section 4), but the PubKey mode of SCimp can in principle
send any message.

When Alice initiates the group conversation, she gener-
ates a random symmetric key that she encapsulates in a
Multicast Key message msg. She sends that message to
Bob in a PubKey message. First, she gets Bob’s public key
from the Silent Circle server. Note that this is the same
key used for Progressive Encryption: the public key is used
both for DH key exchange and for (ElGamal) encryption.
She then generates a random session key ksession = rand()
which she splits into (ek, n) = split(ksession), an encryp-
tion key and a nonce. She derives a 64-bit index from
Bob’s public key imsg = hash(pkB) encrypts the message:
ct = AES CCMn

ek(imsg,msg). Alice sends the key to Bob,
asymmetrically encrypted: esk = EC encryptpkB

(ksession).
The full PubKey message that Alice sends consists of the

label “pubkey”, the protocol version (always 2), a cipher
suite, a locator for the public key used (idpkB), the encrypted
session key (esk) and the encrypted message (ct).

2.5.2. Multicast key. The content of the PubKey message
in the context of group messages is the initial multicast key.
Each group conversation is identified by its unique thread
id. It is not specified how the thread id is generated. A
random initial symmetric key kinit is generated, with its cor-
responding locator idkinit .

The full Multicast Key message msg consists of the label
“multicast key”, the protocol version (always 2), a cipher
suite, the symmetric key (kinit), the key locator (idkinit), the
start time of the thread, the thread creator (XMPP address)
and the thread ID (idthread).

2.5.3. SCimp Symmetric mode. Symmetric conversa-
tions are set up by deriving a multicast key k from the initial
key kinit as k = KDFkinit(“SymmetricMasterKey”, idthread, 2l),
i = KDFkinit(“InitialIndex”, idthread, 64), ioffset = rand(), and
SAS = KDFkinit(“SAS”, idkinit , 64).

It is strange that a value for the SAS is computed, even
though a method for verifying the SAS was never specified.
The SAS is now a 64 bit value, although the verification of
the SAS does not necessarily use the full value for verifica-
tion. But most important, the computed SAS value depends
only upon the value kinit, which renders it useless. Verifying
that these values are the same for different parties does not
authenticate anything: an attacker can just replay it.

To encrypt a message for the group, a participant creates
a SCimp Data message. The encryption is similar to that

Alice (A)

〈initiator〉
Eve (E) Bob (B)

〈responder〉

B

pkE , idpkE

PKStartA

compute SASA,E

find sk0 so that SASA,E = SASE,B

PKStartB

data data

DH1

Eve forwards data, but blocks key messages

Figure 5: SCimp version 2: man-in-the-middle

of regular SCimp, with the exception that the header value
is set to the value of i ⊕ ioffset and after sending, the value
of ioffset is incremented by one. The group key k is never
updated.

2.5.4. Key erasure. Group messaging does not do any-
thing to ensure key erasure or future secrecy. This is the
intended behavior according to the Silent Circle documen-
tation [19]: “The process of keeping multiple participants
SCIMP contents synchronized would be fraught with errors
and trying [to] add the concept of perfect forward security
in a shared conversation would seem moot.”

We strongly disagree with this statement. Key erasure
becomes even more important when one is communicating
with multiple users, because the attack surface grows with
every device that has access to the keys. For a successful
attack, the adversary only needs to compromise one device
and retrieve the key. This would compromise all previous
group messages.

3. RESULTS
This section shows the main vulnerabilities found in SCimp.

We base our analysis on the Silent Circle documentation, but
because of the lack of details we also considered the SCimp
implementation [27].

3.1 Persistent man-in-the-middle attack on
SCimp version 2

Although Progressive Encryption benefits the user expe-
rience, from a security perspective it introduces a weakness.
The keys that are derived from Z0,x are authenticated only
retroactively, when the users verify the SAS derived from
the key negotiation.

One might be tempted to verify the SAS that is derived
from Z0,x, but Figure 5 shows why that does not authenti-
cate the other party. The lack of a commitment to the first
key of the DH key exchange gives the attacker the opportu-
nity to find a SAS-collision.

The lower part of Figure 5 also illustrates how Eve can
maintain a successful man-in-the-middle attack. The trick
is to keep forwarding the data (optionally with alterations),
but never letting Alice or Bob complete a full key negotiation
with her. At that time, Alice and Bob will already send data
that is decryptable by Eve (and requires Eve to re-encrypt to
stay unnoticed). If they would complete the key negotiation,
they might call each other to verify the new SAS, which no
longer matches.

Eve might not go undetected when the users are suffi-
ciently cautious, because they would know that in an uncom-
promised conversation they should have been able to verify
the identity of the other party after at most four messages
have gone back and forth. The protocol does not generate
any warning at this point. A vigilant user would probably
not want to use the PKStart message anyway, because the
authenticity of messages can be guaranteed only after the
messages have been sent. At that point, the users might
indeed detect that they have been victim of a man-in-the-
middle attack, but part of the conversation already took
place. For that vigilant user, the Commit message from
SCimp version 1 is still available in the protocol layer as an
alternative in SCimp version 2, but we are unaware if such
a functionality is accessible through the user interface. Fur-
thermore, there are no clear indications of what method is
used for an incoming message.

3.2 Man-in-the-middle on SCimp PubKey
mode

An adversary with sufficient control over the network can
easily inject her own public key instead of the one from the
honest receiver. When the initiator sends the PubKey mes-
sage, the adversary intercepts and compromises the multi-
cast key. If she wants to remain undetected, she simply
re-encrypts the message to the public key of the honest re-
ceiver.

The reason that this attack is so trivial, is that there is no
SAS (or anything equivalent) for Alice to verify the identity
belonging to the public key that she receives. To protect
against this attack, it is better not to use the PubKey mes-
sages. If she still wants to set up a group conversation, she
should set it up using a passphrase. That passphrase can
be shared (for example) by setting up a pairwise authenti-
cated SCimp conversation with all group members, but no
protocol support for this is provided in SCimp.

It is remarkable that SCimp uses a PubKey message for
distributing the random group session keys, instead of dis-
tributing the messages with PKStart messages (or use ex-
isting SCimp sessions where possible). This solution would
have kept the protocol much simpler and more importantly,
it gives the users a chance to authenticate each other using
the SAS. It would still be susceptible to the man-in-the-
middle attack described in Section 3.1, but at least that
attack is detectable by sufficiently vigilant users.

3.3 Desynchronizing clients
Silent Circle only documents how progressive encryption

should be done in the context of a fresh conversation. It
remains undefined how Bob should handle a PKStart mes-
sage from Alice when he has already set up a SCimp session
with her (and they share a cs). It turns out that Eve can
use the unspecified behaviour in order to desychronize the
parties, which she can leverage into a full undetected man-

in-the-middle attack.
By inspection of the code (see Section 5.2 for details) we

found that the implementation will blindly accept any in-
coming PKStart message, delete cs and initiate a fresh pro-
tocol. Only the plaintext message header is inspected before
triggering this behaviour. By deleting cs, the key continu-
ity is destroyed and the identity of the other party is no
longer validated. This gives rise to a trivial man-in-the-
middle attack: Eve waits until Alice and Bob have set up
a SCimp session and have verified the SAS. She then sends
Alice a PKStart message, pretending it originates from Bob.
She could use (for example) an automatically handled Siren
message receipt (see Section 4) as user message so that Al-
ice does not even detect that any message was sent at all.
Alice continues with the key negotiation with Eve—as if it
was the first key negotiation with Bob—and she will never
even receive a warning that she has rekeyed from scratch.
Eve completes the same process with Bob and effectively
she has set up a man-in-the-middle attack without any of
the parties noticing. Eve can go one step further and repeat
the process with one of the parties until the SAS of both
sessions matches. This way she avoids detection even in the
unlikely event that a vigilant Alice and Bob somehow decide
to revalidate their already confirmed SAS.

Version 2 of the protocol introduced another similar bug.
When a client receives an out of order keying message (DH1,
DH2 or Confirm), a general protocol error warning is given
and cs is deleted. Only the plaintext message header is in-
spected before triggering this behaviour. The given warn-
ing does not hint at any malicious activity. Eve can lever-
age this to a man-in-the-middle attack as well. When Alice
wants to send her next message it will probably be a PKStart
message, for which she needs Bob’s medium-term key (that
was also deleted during the session reset). Eve injects her
own public key and completes the key negotiation. Vigilant
users can protect themselves from this attack by rekeying
and revalidating the SAS after every protocol error warning
they get. It is unlikely that they will, especially consider-
ing that Eve can inject arbirtrarily many invalid messages
to trigger protocol errors until Alice and Bob grow tired of
revalidating every single time.

3.3.1. Commit contention. According to the specifi-
cation, clients should gracefully handle Commit contention
(see Section 2.2.3).

What actually happens in the implementation is that when
Alice receives an unexpected Commit message (possibly but
not necessarily during key negotiation), she resets her state,
deletes cs, issues a protocol contention warning and contin-
ues to process the Commit message. This means she will
reply with a DH1 message that Bob does not expect, so it
will trigger the above described bug and Bob resets his ses-
sion. Out of order messages after Commit contention will
also crash the protocol, but with more delay. Alice and Bob
must redo the first key negotation including the SAS confir-
mation, losing all benefit from key continuation.

3.4 Identity misbinding attack
The identity misbinding attack was first described by Diffie,

van Oorschot and Wiener [11]. The original attack describes
the scenario where Eve claims to own the public key of Bob
and then lets Alice talk to Bob while she thinks she is talk-
ing to Eve. For example, this attack applies to the Signal
Protocol [13]. SCimp does not have long-term public keys,

so the attack does not work directly, so Eve will have to fool
Alice and Bob some other way.

Imagine that Alice and Bob are two chess grandmasters.
Eve also likes to play chess, but she is not a very good player.
Luckily, she has a way to fool both Alice and Bob. She is
going to let them play a game of chess over SCimp, in which
they will send each other messages containing the moves.

Eve tells Alice that her XMPP address is B, which is
actually the address of Bob. Likewise, she convinces Bob
that her address is A. They will initiate in a key exchange
and derive their keys, at which point they should confirm
their SAS.

At this stage, Eve calls them both at the same time, but
makes sure that neither party can hear the other. Both
phone calls can be over a fully authenticated channel and
Alice and Bob are allowed to gain all the “confidence in the
identity of the other party using standard human interac-
tion”. After all, they really are talking to Eve. Eve just
waits for one of the parties to confirm half of the SAS. As-
sume that Alice talks first. Eve repeats Alice’s code to Bob,
who will reply with the other half of the code. Eve forwards
the code to Alice. Now both grandmasters are convinced
that they are connected to Eve, and the chess game begins.

Note that Eve can mount the same attack on both play-
ers by simply setting up a separate SCimp connection with
both players. She then forwards every message she gets
to the other player. This attack would match the chess-
grandmaster attack described in [5] or the mafia-fraud at-
tack described in [10]. However, this is not the issue with the
above scenario: the issue is that Alice is convinced that B
is the address of Eve and Alice and Bob are communicating
directly without any message passing from Eve.

3.5 Out of order messages
The documentation lacks details on how to handle out

of order messages. The implementation has two separate
mechanisms in place in order to handle these messages: a
few receive keys are stored to handle messages that are not
too old and seed keys are stored in case messages arrive after
rekeying.

More precisely, Bob computes 16 symmetric message re-
ceive keys krcv in advance and puts them in an array. When
he receives a message, he looks up the corresponding key, by
inspecting the array of precomputed receive keys and seek-
ing if an index matches. When it does, he copies the stored
key for use in decryption and erases the original.5 When the
precomputed array starts to get empty (four or more receive
keys have been erased), he forwards the ratchet to fill the
array again. Keys older than 16 messages get discarded. If
Bob cannot find the key index in the array, he inspects the
stack of old seed keys. If the difference in indices is smaller
than 32, the key is derived from the seed key.

After successful rekeying, Bob has derived new message
keys. Before krcv,0 is overwritten with the newly expanded
value, the array of precomputed receive keys is inspected
for unused key values. The key with the lowest index is
stored as a seed key for later usage, so that messages that
arrive out of order (sent before rekeying but received after
rekeying) can still be decrypted.

The problem with the stored seed keys is that the key will
remain stored in the array of precomputed receive keys, if a

5Keys are deleted before verifying the message authenticity,
see Section 5.5.2.

message was withheld from the receiver, either by a network
failure or by an adversary. If rekeying happens before the
key is erased from the array (before 16 messages have been
received), that key will be stored as the seed key. This key
does not only compromise the key erasure property of the
withheld message, but of all messages until rekeying, because
the keys for those messages can be derived from the seed key.

3.6 First key negotiation leakage
The documentation states that a random value should be

used for cs, when Alice and Bob do not yet share a cached
secret. With a random value, Bob can ignore hcsa from ev-
eryone he has not communicated with before (and parties
should be careful not to include the value in the computa-
tion of htotal). Substituting a random value for cs has the
advantage that the message does not leak if this is the first
key negotiation or not.

However, in the implementation, the value cs is not cho-
sen randomly, but set to 0. The implemented version leaks
whether the key negotiation is an initial key negotiation or
a rekeying. It is leaked in the message content to an at-
tacker that computes hcsa using cs = 0 and compares the
sent value. This means an attacker can easily see that a
new key negotiation has started without existing cs. This
gives a confirmation that the DOS attack of Section 3.3 was
successful in erasing cs.

3.7 Multiple devices
The SCimp protocol has no good way to send messages

to a user that uses multiple devices with only one XMPP
address.

Assume that Bob owns both an Android device and an
iPhone, with both of them linked to his XMPP address.
When Alice wants to talk to Bob, she creates a new SCimp
context on her device, which she will use to initiate a key
negotiation with Bob. She sends an XMPP stanza, contain-
ing her Commit message, to the Silent Circle XMPP server.
The server sees Bob’s XMPP address as recipient and sends
the message to the first of Bob’s device that it sees online.
Assume that it is the Android device, then Alice and Bob
can complete the key negotiation and set up a session be-
tween Alice’s device and Bob’s Android device.

When Alice sends a message to the Bob, the XMPP server
will just send the message to whatever device it sees online
first. If that device is the iPhone, Bob cannot decrypt the
message, because the keys that belong to the SCimp context
are stored on the Android device and not on the iPhone.
Bob’s iPhone will display an error and send back a resend
request.

SCimp has no robust method for handling the problem.
Instead, Alice will have to store a SCimp context on her de-
vice for both of Bob’s devices. When encrypting a message,
she simply picks the context that she used to decrypt the last
message she received from Bob. If that context turned out to
be wrong, hopefully Bob will send a resend request from the
correct context so she can resend the message, re-encrypted
in the correct context. Because the communication is asyn-
chronous, this might take a long time. The user experience
can get especially bad if Bob switched to his first device
before the resend message was received: he will again be
unable to decrypt the message and another context switch
is required.

This problem is not a specific problem of SCimp, but one

that affects many other secure messaging protocols as well.
A possible solution would be not to allow switching between
devices, but this would give a poor user experience, possibly
worse than the current solution for multiple devices.

4. SIREN
Silent Circle also provides some security/usability features

to their application by adding functionality in a layer on
top of SCimp, called Siren. For the SCimp protocol, Siren
messages are just normal data messages. However, some
of the features that Siren provides do affect the security
properties of the protocol. In particular, message signatures
in Siren can undermine some deniability of the message and
sending files with Siren (using the Silent Circle cloud) is not
as secure as it should be.

Siren packets are JSON encoded messages that are the
plaintext input (pt) to the SCimp protocol. In addition
to sending the actual message, the user can also add some
security attributes to the message. For example, Siren could
add a “for you eyes only”-tag to a message, which should
prevent the other party from copying the message or taking a
screenshot of it. Other features are to let the message delete
itself after a certain amount of time, to redact a message,
to request re-sending of an old message, to request a receipt
upon message delivery or to send GPS data.

None of these features can be ensured by the protocol
or by any other cryptographic measure in an application,
although it might be enforced by the Blackphone if these
features are integrated in the OS. We consider these features
to be nothing more than polite requests that may or may
not be honored by the other party.

That does not mean that Siren packets do not have impact
upon the security of the protocol as a whole. First of all,
in SCimp version 2, messages can be signed, which affects
the deniability of messages. Some Siren packets, such as
message redaction, will even require a signature in future
versions SCimp. Secondly, SCimp version 2 allows for files
to be sent via the cloud, which also has implications on the
security of the protocol. We do not know if Siren (or a
similar layer) is added on top of the Signal Protocol layer in
the Silent Phone application, but if it is then the findings of
this section apply to the current application as well.

4.1 Signed messages
Silent Circle mentions that it allows for signatures on Siren

packets and will even require signatures for certain Siren
messages in future requests. It is not clear how this was
imagined to be done, since users do not own a long-term
public key. The medium-term key has problems of its own,
as described in Section 3.2.

The documentation [19] mentions that: “To prevent a
form of denial of service attack at the XMPP level, we re-
quire that the burn request originate from the same JID as
the message being burned, and in later versions require that
the request be signed by the originator.”

The reason that a signature is necessary is that a sender
might want to redact a message from the Silent Circle server
before it has been delivered to the receiver. To do so, the
user sends an XMPP stanza to the server containing a plain-
text identifier of the earlier message and the plaintext re-
quest that the message will not be delivered. Since it is
plaintext, anyone observing traffic to the server could fake
to send this XMPP stanza.

Figure 6: SCimp: Convergent encryption
(source: [19])

Without a signature on the redaction message, the sender
can plausibly deny sending the message at all. However,
when the user has signed a message redaction, they have
implicitly admitted that they have sent the message. Instead
of being able to deny that the message was sent at all, the
user can only deny the content of the message. This is a
more general issue, but certainly not one solved by SCimp.

4.2 Cloud storage
A second feature that is encapsulated in Siren packets is

the ability to send files via SCimp. To send files over XMPP
would be very inefficient. Instead, the sender uploads their
file to the Silent Circle cloud. Before uploading, the files
are encrypted using convergent encryption, which encrypts
the files using a key that was not generated randomly, but
derived from the file contents.

Silent Circle claims [19] that convergent encryption is used
because it reduces storage space on the Cloud service: “We
do this to avoid duplication for media such as photos and
documents. However we purposely added in a device unique
salt to prevent third parties from deducing a file’s content
by checksumming the same data.”

Unfortunately, this quote does not reflect what is imple-
mented, because a salt is only added to the file locator and
not to its encryption key.

Furthermore, a device unique salt would prevent third par-
ties from deducing the file’s content only if that salt was se-
cret and if it contained enough entropy to be unguessable by
a third party. Silent Circle uses a public value, namely the
senders bare XMPP address (without resource information,
for example “alice@silentcircle.com”). Secondly, when the
salt is only added to the file locator, an attacker that can
eavesdrop on the encrypted data that is downloaded from
or uploaded to the server is able to bypass any security that
the salt would add if it were secret.

4.2.1. Convergent Encryption. For completeness, in
this section we will describe the details of how convergent
encryption is implemented by Silent Circle. This is shown
in Figure 6. When Alice wants to send a file f to Bob,
she first derives a key k from the file metadata and data as
k = hash(metadata ‖ data).

The hash-algorithm is SKEIN256, resulting in a 256 bit
value. She continues to compute an identifier for the file
(idf), derived from the computed key and a salt as idf =
KDFk(“SCloudLocator”, salt, 32).

The KDF always uses HMAC in combination with SHA256.

Figure 7: SCimp: Convergent decryption
(source: [19])

The value for the salt is a device specific value, which is set
at the sender’s bare XMPP address.

In order to encrypt the data in CBC mode, Alice re-
quires both an encryption key ek and an IV n, which are
simply computed by splitting key k in equally sized halves:
(ek, n) = split(k). She encrypts as ct = AESn

ek(metadata ‖
data). The encryption algorithm is AES128 in CBC mode.
Files bigger than 64kB are cut into chunks, which will each
be encrypted with their own key and get their own file loca-
tor.

Alice uploads the ciphertext ct to the cloud, using the
locator idf as an address for retrieving the file. She en-
capsulates k, idf and some file metadata in a Siren packet,
which is sent to Bob as a SCimp Data message.

Decryption of convergent encryption is depicted in Fig-
ure 7. Upon receiving the SCimp message, Bob is able to
download the file from the cloud using the file locator. He
is able to decrypt the file using the key that Alice has sent
him.

4.2.2. Confirmation of a file. A known attack on con-
vergent encryption is the confirmation of a file:

Assume that Ed wants to send a secret file to Glenn, but
he does not want his employer to know that he sent that
file. He also knows that they are monitoring all traffic to
and from his device. His employer has already precomputed
a database of all the secret files (t in total), encrypted with
convergent encryption. The moment he uploads his file to
the cloud, his employer intercepts the data and searches for
a match in the database. Using binary search, the employer
can complete this search in O(log t).

If Silent Circle had added the device specific salt to the
encryption key (like they claim in the documentation), the
cost for the employer would only have grown if multiple users
are suspected. For m suspicious employees they would need
to add tm encrypted files to the database. Binary search
would still make the runtime of the search a very effective
O(log tm). This does assume that the attacker knows the
device specific salt of each device, which is a reasonable as-
sumption when the salt is simply the bare XMPP address.

However, this attack would have been prevented if each
device added a secret value instead of a public salt. Ed
could then have provided the decryption key per file, without
leaking his secret salt.

4.2.3. Learn the remaining information. Another
well-know attack on convergent encryption is the “learn-
the-remaining-information” attack [32]. This attack applies
to files that contain little entropy. The attacker can just
convergently encrypt all possible files until the ciphertext

matches that of the uploaded file. Not only has the attacker
gained confirmation that this file was uploaded, but they
also learned the remaining information that was in the file.
A device specific salt would help only a little, because now
the attacker has to brute-force the files for each user indi-
vidually, instead of being able to search all users at the same
time. Again, a secret value instead of a public salt would
have prevented this attack, as long as it contained enough
entropy to make a brute-force search unfeasible.

4.2.4. File injection. The above attacks are well known
attacks on convergent encryption, which leak metadata or
even parts of data of a file. The Silent Text implementa-
tion has the additional problem that attacker can swap in a
different file when they know which file is being uploaded.

When attackers use one of the attacks above to learn
which file is being uploaded, they also learn the encryp-
tion key, because they can derive it from the file. They can
use that key to encrypt another file, which could contain
malware. When Bob requests the file from the cloud, the
attacker substitutes the file with the encrypted malicious
file. Bob, who is able to decrypt, falsely assumes that the
file came from Alice.

Bob can detect this attack by recomputing the key from
the decrypted file and comparing it to the one he used for
decryption. When they do not match, he knows that the file
he received was not the file uploaded by Alice. At that point
the file can be deleted, before it is opened by an application.

Note that authenticated encryption, for example, CCM
instead of CBC blockmode, would not have helped prevent
this attack, because it only authenticates the data under
the assumption that the encryption key is unknown by the
attacker.

4.2.5. Conclusion on convergent encryption. It seems
that convergent encryption introduces more problems than
it solves. Convergent encryption, as implemented in Silent
Text, only saves space when a user sends one file to multi-
ple recipients. When the same file is uploaded by different
senders, the file gets stored under different locators, so they
are very likely stored as separate files.

A much simpler and more secure solution would be to gen-
erate a random key for encryption, encrypt the file in CCM
mode, upload the ciphertext to the cloud and send the key
in a secure SCimp message to the other party or to multi-
ple parties if the file should be shared. We are not aware
of other implementations of convergent encryption omitting
the easy check of file correctness.

5. IMPLEMENTATION DETAILS
Due to the insufficient level of documentation, code re-

view was necessary, though tedious. The implementation of
SCimp provided on GitHub had several implementation er-
rors, including cryptographic errors. We report the results of
our code review in this section. The SCimp implementation
is written in C and should be suited to run on both Android
and iPhone mobile devices. A cross-platform library called
libsccrypto contains the code for both SCimp and SCloud.

There are many ways in which the described bugs affect
the security of the communication. Some bugs compromise
the integrity and confidentiality of the protocol, or simply
crash the application, leading to a possible DOS attack.
More subtly, some encryption primitives are implemented

Figure 8: SCimp message flow (source: [18])

wrong and leak information to an adversary through side-
channels.

We conclude this section by analyzing non security-critical
bugs, which could also be classified as style issues. We ex-
plicitly mention them because they hinder the legibility and
maintainability of the overall software. To put it into the
words of Jon Callas, one of the Silent Circle co-founders:
“All bugs are security bugs” [8].

5.1 High level overview
The heart of SCimp is implemented in a few files: SCimp.c

(1219 sloc6), SCimpProtocol.c (2970 sloc), SCimp.h (451
sloc) and SCimpPriv.h (227 sloc). This code calls cryp-
tographic functions, provided by the LibTomCrypt library,
wrapped in the custom Silent Circle functions (in SCcrypto.c

and SCccm.c). To convert the data to messages suitable for
communication with the SCimp message format, two seri-
alizers are provided in SCimpProtocolFmtJSON.c (default)
and SCimpProtocolFmtXML.c.

The basic flow of a SCimp conversation is shown in Fig-
ure 8. Each conversation is managed by a separate SCimp-

Context “object” (actually a structure, because C has no
objects). It can be created with the function SCimp.c::

SCimpNew, as shown in point 1. Various properties such as a
choice for the cipher suite and the SAS method are set. Set-
ting the event handler is non-optional and turns out to be
very important for the functionality and security of the pro-
tocol. This handler is responsible for many types of events,
the most important ones being errors, warnings and sending
packets.

The SCimpContext structure contains a few fields worth
mentioning here. First of all, it holds a state variable of
type SCimpState. It indicates the current position in the
protocol. For example, when the devices state is kSCimp-

State_DH2, the role of the device is initiator and it has just

6Source lines of code, not counting comments and empty
lines.

init

commit dh1

dh2

ready

 reset

 rcvCommit

 rcvDH1

 rcvDH2

rcvConfirm

startDH

pkStart

pkCommit

sndConfirm

rcvDH1

rcvCommit

startDH
rcvPKStart/

pkStartContention

rcvCommit

rcvPKStart

Figure 9: SCimp state diagram, as defined by
SCIMP_state_table

sent a DH2 message. A SCimpContext also holds a reference
to the used serializer.

At point 2 of Figure 8, the initiator starts the first key
negotiation by calling SCimpStartDH (or for Progressive En-
cryption: SCimpStartPublicKey). Points 3–5 show the basic
structure of how the first key negotiation is further handled.
Internally, when SCimpProcessPacket is called, the deserial-
ize handler processes the message and triggers a transition,
based upon the message tag. The functions that are then
called by the state machine are responsible for putting all the
data in the right place to be able to call the cryptographic
primitives. After the keyed event has been triggered, the
participants can send data, as shown in points 6–9.

Besides handing the messages, a SCimpContext is also re-
sponsible for managing key material, including storing keys
for out of order messages. It also holds on to a queue of
transitions (necessary when running with multiple threads),
the role of the current device (initiator or responder), et
cetera. Basically, it is just a structure that holds the entire
administration that is required for running SCimp.

5.2 State machine
The SCimp implementation defines a state machine that

determines what will happen when certain transitions are
triggered. The state machine is defined in SCIMP_state_table

and displayed in diagram 9. This section explains the state
machine, indicates some problems that it has, and looks at
a few ways how the implementation bypasses the state ma-
chine all together.

In the diagram, the blocks define the states, while labeled
arrows define the transitions between states. The label de-
fines both the transition that is triggered and the function
that handles the transition. For example, rcvDH2 trig-
gers the transition kSCimpTrans_RCV_DH2 and is handled by
sDoRcv_DH2. The double label at the pkCommit state means
that the transition rcvPKStart is handled by pkStartCon-
tention. Arrows that do not start at a state represent events
that can be handled from any state, except for states that al-
ready handle that transition. For example, the rcvPKStart
transition goes to the dh1 state, except when the current
state is pkCommit.

Internally, SCimp has a function sProcessTransition that
manages the state, by referring to the state machine, im-
plemented in SCIMP_state_table. Each table entry consists
of four items:

1. the current state

2. the transition that was called

3. the next state

4. the function that handles the transition

5.2.1. State machine bugs. The biggest issue with the
state machine is highlighted in red. The rcvPKStart transi-
tion can be triggered by an incoming message and is inde-
pendent of the current state. This leads to the man-in-the-
middle attack described in Section 3.3.

There are a few other things wrong with this state ma-
chine. First of all, SCimp defines a state pkInit that does
not even occur in the table. It is strange that there are three
states for Progressive Encryption, even when there is only
one message that differs from keying in SCimp version 1.
According to the code comments, the states represent the
following phases in the protocol:

pkInit pkStart info ready, waiting for first send

pkStart pkStart sent, waiting for DH1

pkCommit pkStart was received, sent DH1

The pkStartContention should happen when the device
has just sent the PKStart message and then receives a PKStart
message, so when it is in state pkStart. Upon inspection of
the state machine, it turns out that contention on PKStart
happens in the pkCommit state. In the pkStart state, the
state machine is showing that it expects a Commit message.
It appears as if the pkCommit state should have been named
pkStart, pkStart should have been pkInit and pkInit should
not exist.

What is remarkable is that no state transition leads to
either the pkStart or pkCommit. It turns out that the state
machine is bypassed, see Section 5.2.2.

A second issue is that the sndConfirm transition seems
redundant, because the rcvDH2 handler should just handle
anything that needs to happen when the Confirm message is
sent. The code comment at the sndConfirm handler suggests
that this is a pseudo state, used to inform the user of keying
when it is ready. We think this could and should have been
done in the rcvDH2 handler.

The commitContention handler is called when the rcv-
Commit transition is triggered in any state other than init,
PKStart or ready. It is not displayed because it can be trig-
gered in any current state and does not affect the next state,
so it is unrelated to the rest of the state machine. Real com-
mit contention can only happen when the sender is in the
commit state. This indicates that the commitContention
handler does not actually handle commit contention. It ac-
tually resets the SCimpContext and thereby bypasses the
state machine, triggering the bug described in Section 3.3.1.

A minor style issue is that the startDH transition from
the init state is redundant, because the startDH transition
will have the same result from any state.

5.2.2. State machine bypass. The described bugs might
suggest that this state machine does not work at all. The

fact that the application can actually send messages suggests
otherwise. The reason is simple, the state machine is ignored
often and many functions are called directly, which should
only be called from a state machine handler. In other places
in the code, the state variable is even modified directly.

It already begins with creating a new SCimpContext. The
SCimpNew function resets the context, including setting the
state to the value init. After resetting, the function scEvent-

Transition is called, which tricks the event handler into
thinking that an event transition has taken place. There is
no reason not to use the reset transition of the state machine.

Approximately the same problem occurs with the handlers
commitContention, improperRekey and pkStartContention.
By the definition of the state machine, we expect these han-
dlers not to alter the state. The commitContention handler
first resets the SCimpContext, effectively setting the state

to init, then goes on to call the rcvCommit handler (bypass-
ing the state machine) and finally sets the state variable
to dh1. The pkStartContention handler follows the same
pattern.

The improperRekey handler has its own confusing im-
plementation. First, it triggers the warning protocolError
(apparently not an error) and then goes on to reset the
SCimpContext, which leads to the second man-in-the-middle
attack described in Section 3.3.

The irony is that all this bypassing of the state machine
means that the state machine must set NO_NEW_STATE for
the next state, otherwise it would undo everything that was
bypassed by the handler.

Fix. The state machine appears to be a good idea, taken
from the OTR documentation/code. However, it should be
the foundation of the message handling implementation and
not implemented as an afterthought, as is in SCimp. The
result is that the state machine more often gets in the way
of the programmer than that it helps him to keep the code
clean. Bypassing the state machine can then feel more nat-
ural for the programmer, even if it results in hacks such as
the sndConfirm transition.

Unfortunately, there is no easy fix for this bug, as it would
require changes to the entire structure underlying the code
itself. Many functions will have to be rewritten. It might
be easier to simply strip out the state machine completely
and directly interact with the handling functions. From a
security perspective, this easier fix is not ideal, since a well
implemented state machine makes it much easier to analyze
the code.

5.3 CCM Encryption
The design of SCimp contains the CCM blockmode, stand-

ing for Counter mode with CBC-MAC. Counter mode is
used for encryption/decryption of the data, while the CBC-
MAC authenticates the data, by computing an authentica-
tion tag over the plaintext and additional data—or header.
This blockmode is implemented in LibTomCrypt [28, 16],
according to the NIST specification [12]. This implemen-
tation contained an error leading to a timing side-channel
vulnerability.

According to the NIST specification of CCM, the authen-
tication tag is part of the ciphertext. In order to decrypt,
this full ciphertext must be decrypted, resulting in a “plain-
text” tag. The tag must then be recomputed from the plain-
text and compared with the decrypted value. However, upon
decryption in the LibTom implementation, the plaintext is

computed and a tag is computed from the header and (de-
crypted) plaintext. This is then re-encrypted, so that the
caller of the function must check the correctness of the tag.

NIST specifies that “only the error message INVALID is
returned”when the decryption-verification fails. In that case
“the payload P and the MAC T shall not be revealed” and
“the implementation shall ensure that an unauthorized party
cannot distinguish whether the error message results from
[invalid message format] or from [authentication failure], for
example, from the timing of the error message.”

In the case of SCimp, the ccm_memory wrapper function in
SCccm.c does indeed compare the tag value after decryption,
but this comparison is done with a call to memcmp, which
does a byte-by-byte comparison and returns as soon as the
first difference was encountered (see also Section 5.4) thereby
leaking the first difference.

We proposed several fixes to the LibTomCrypt develop-
ers, for example removing the tag parameter from the func-
tion and letting it be part of the ciphertext parameter (as it
should be according to the specification). Verification of au-
thentication can then be done inside the function ccm_memory.
Since this would break compatibility with the existing im-
plementation we came up with a quickfix as a compromise
which was integrated upstream.7

Listing 1: LibTomCrypt: CCM quickfix

i f (d i r e c t i o n == CCMENCRYPT) {
/∗ s tore the TAG ∗/
for (x = 0 ; x < 16 && x < ∗ tag l en ; x++) {

tag [x] = PAD[x] ˆ CTRPAD[x] ;
}
∗ tag l en = x ;

} else { /∗ d i rec t i on == CCMDECRYPT ∗/
/∗ decrypt the tag ∗/
for (x = 0 ; x < 16 && x < ∗ tag l en ; x++) {
ptTag [x] = tag [x] ˆ CTRPAD[x] ;
}
∗ tag l en = x ;

e r r = XMEMNEQ(ptTag , PAD, ∗ tag l en) ;
}

The function ccm_memory does both encryption and de-
cryption, depending on the direction parameter. At the end
of the ccm_memory function, the PAD array holds the value
of the authentication tag, computed over the plaintext and
header, CTRPAD is the encryption/decryption block from the
Counter mode and tag is the function parameter. In case of
decryption, the tag is decrypted and compared against the
computed PAD with the XMEM_NEQ function.

Upon inspection of this function, we found another bug.
The function indeed did a constant time comparison of the
input arrays, by computing the exclusive or of the com-
plete array per byte and combining the results with the or-
operator. The problem was that they did not convert this
byte into a single bit output before outputting the result.
By investigating the exact value of the returned value, an at-
tacker learns the error locations and might learn something
about the secret data that was compared. We proposed a
simple fix, by folding the resulting byte (ret) into one single
bit.8

7commit 25af184cd59b1769c0588678362adb5fd41a50ed
8commit 75b114517a3f8db2075a45b0af87d4d74778ad66

Listing 2: LibTomCrypt: XMEM_NEQ

[. . .]
r e t |= re t >> 4 ;
r e t |= re t >> 2 ;
r e t |= re t >> 1 ;
r e t &= 1 ;

return r e t ;

One thing to note, however, is that modes that work by
encrypt-then-mac are not vulnerable to the attack that was
described in this section, because a good implementation
will only decrypt data that is authenticated.9

5.4 Side-channels
A side-channel to software implementations of a cryp-

tosystem happens when an attacker can learn secret infor-
mation from observing the physical implementation. For
example, an attacker might observe how long a device takes
to perform a certain cryptographic operation. If the timing
depends upon secret data, some information of that secret
leaks to an attacker measuring the time taken.

In this section, we look for software bugs that might lead
to a timing attack. We did not analyze the LibTomCrypt
library for other side-channel vulnerabilities, such as cache-
based side-channel attacks [4], because there were enough
timing attacks.

5.4.1. Comparison of secrets. Every comparison of se-
cret data should be done in constant time. We already men-
tioned that after CCM decryption, the verification is done
by calling memcmp, which does non-constant time compari-
son, because it sequentially compares byte-by-byte and re-
turns as soon as the first difference was encountered. This
is not the only place in the code where this happens, be-
cause almost all secret values are compared with this same
function, leading to side-channel attacks.
SCpubTypes.h defines a macro CMP, that is used to com-

pare secret values.

Listing 3: SCpubTypes.h (line 121–125)

#define CMP(b1 , b2 , l ength) \
(memcmp((void ∗) (b1) , (void ∗) (b2) , (l ength)) == 0)

#define CMP2(b1 , l1 , b2 , l 2) \
(((l 1) == (l 2)) && (memcmp((void ∗) (b1) ,

(void ∗) (b2) , (l 1)) == 0))

The macro opens up a side-channel when validating hcsb
in DH1 (SCimpProtocol.c::2254); when validating hcsa in
DH2 (SCimpProtocol.c::2318); when validating maca in
DH2 (SCimpProtocol.c::2336); when validating macb in
Confirm (SCimpProtocol.c::2371); and in validating pka.

The leakage is not an issue for mac and pka – all key mate-
rial is discarded. However, hcs depends upon the long-term
secret value cs and not upon fresh random values, meaning
that it might leak through a timing attack. The attacker
can fix a value for pkb and send a guess for hcsb in DH1 and
time how long it takes to receive DH2. When the value of
hcsb is wrong, the honest initiator will get a warning, but the
protocol will continue and the device will reply with DH2.

For the attack to succeed, the victim needs to initiate
the protocol repeatedly and there might be warnings, at

9See also: http://thoughtcrime.org/blog/
the-cryptographic-doom-principle/.

https://github.com/libtom/libtomcrypt/commit/25af184cd59b1769c0588678362adb5fd41a50ed
https://github.com/libtom/libtomcrypt/commit/75b114517a3f8db2075a45b0af87d4d74778ad66
http://thoughtcrime.org/blog/the-cryptographic-doom-principle/
http://thoughtcrime.org/blog/the-cryptographic-doom-principle/

which point the device might decide10 that the value cs is
no longer trusted and that the SAS should be confirmed to
re-authenticate the other person. If that happens, it does
not matter if the attacker learns cs. The attacker also needs
to make sure that the value of cs does not get erased on the
side of the honest initiator, which will happen if she sends
any other message than Confirm. The honest initiator might
still erase her value of cs, but that depends upon the error
handler.

A timing attack on hcsa is also unlikely, because this value
gets sent together with maca in message DH2. The chance of
a correct guess for maca is negligible, so the honest responder
will abort the protocol. For the attacker, that means that
there will be no reply from which to measure timing.

Of course, these timing attacks are assumed to be done
over the network. If an attacker can get their hands on the
victims device, it might be easier to exploit the timing vul-
nerabilities. For example, re-initiating the rekeying protocol
might be trivial.

Fix. Even though exploiting the existing timing channels
is non-trivial, to fix the vulnerabilities is very easy. Simply
use a constant time comparison, preferably by reusing the
XMEM_NEQ function in LibTomCrypt (see Listing 2).

5.5 Software bugs
The code contains a few other bugs as well.

5.5.1. Transition queue race condition. The library is
designed to work with multiple threads running in parallel.
In order to keep these threads from competing for the same
resources, the SCimpContext structure has a pthread_mutex_t

value (mp), that gets locked every time a SCimp transition
is triggered.

Listing 4: SCimpProtocol.c (line 3516–3544)

SCLError scTriggerSCimpTrans it ion (
SCimpContextRef ctx , SCimpTransition trans ,
SCimpMsg∗ msg)

{
SCLError e r r = kSCLError NoErr ;

i f (pthread mutex try lock (&ctx−>mp) == EBUSY)
{

e r r = sQueueTransit ion(&ctx−>transQueue ,
trans , msg) ;

return e r r ;
}

e r r = sProce s sTrans i t i on (ctx , trans , msg) ;

while (ctx−>transQueue . count > 0)
{

TransItem item ;

e r r = sDeQueueTransition(&ctx−>transQueue ,
&item) ;

i f (e r r == kSCLError NoErr)
{

sProce s sTrans i t i on (ctx , item . trans ,
item .msg) ;

}
}

pthread mutex unlock(&ctx−>mp) ;

return e r r ;
}

This mutex ensures that no more than one thread is able
to process a transition at the same time. However, this

10This depends on the handlers, see Section 5.6.2.

implementation is missing a mutex on the queue itself. The
thread holding the mutex might unlock it before the new
transition was enqueued, with the result that it will not be
processed. The thread that holds the mutex mp might try
to dequeue the ctx->transQueue, while another thread is
not yet finished with enqueuing a new item, or two threads
might try to enqueue to the same queue slot at the same
time, resulting in corrupted data. This bug is known as a
race condition and can lead to non-deterministic behavior.

Fix. The blocking function pthread_mutex_lock should
be used instead of the non-blocking pthread_mutex_trylock.
If this costs too much in terms of performance, an addi-
tional mutex could lock access to the queue. The latter so-
lution will probably turn out moderately complex, because
it should prevent the active thread from unlocking the mp

mutex before the item was enqueued.

5.5.2. Delete receiving keys. Upon receiving a data
message, the receiver tries to retrieve the key by using the
(plaintext) value LSB(isnd,j) in the function call sGetKey-
forMessage. When that function finds the key in the queue
of receive keys, it copies the key to a buffer and overwrites
the queue item with zeros. It continues to verify-decrypt
the message, displaying it to the user and finally clears the
copied key buffer as well.

This gives the opportunity for an attacker to perform a
DOS attack, by injecting random messages to the receiver,
but with a value for the index that was expected. Since the
index value is simply incremented with every message, the
attacker can repeat the attack for as long as he likes, thereby
forwarding the key of the receiver arbitrarily far, disabling
further communication between the honest participants.

Fix. Only after the message was verified successfully,
should the key value be deleted.

5.5.3. Mixing label in hcs. A discrepancy between code
and spec is which value is hashed: according to the doc-
umentation the “Initiator” string is not digested: hcsa =
MACcs(hash(pka) ‖“Initiator”). In the implementation, Al-
ice does digest this string as hash(pka ‖“Initiator”). With
the documented design, Bob can check the validity of hcsa
before engaging in key generation. He can ignore invalid
Commit messages, whereas with the implementation he needs
to wait for Alice to open her commitment in message DH2.
This makes the protocol less efficient and opens up the possi-
bility for a DOS attack, where Eve can trick Bob into open-
ing many SCimp sessions.

5.5.4. Verify memory allocation. In order to allo-
cate memory, C has the function malloc, which is used
on a few places in the SCimp implementation. More of-
ten, the code calls the macro XMALLOC, which is defined ei-
ther in the file src/main/sccrypto/SCPubTypes.h, the file
src/main/tommath/tommath.h or in src/main/tomcrypt/-

headers/tomcrypt_custom.h, depending on the order of im-
ports. In any case, the macro simply gets reduced to malloc.
A call to malloc can fail and return NULL, which should be
caught and handled appropriately. The same applies for
other memory allocating functions such as calloc and re-

alloc.
For this reason, SCpubTypes.h defines the CKNULL macro.

Listing 5: SCpubTypes.h (line 127–129)

#define CKNULL(p) i f (I sNu l l (p)) {\
e r r = kSCLError OutOfMemory ; \
goto done ; }

More often than not, this check is omitted after a memory
allocation.11 This can lead to the software crashing, but we
are not aware of any way this can compromise the security
of the application.

Fix. The fix is simple: search for all memory allocations
in the code and add the CKNULL macro where necessary.

5.5.5. Checking error codes. Something similar happens
with the CKERR macro, which should be called after every
SCimp function that might return an error (which includes
almost every function).

Listing 6: SCpubTypes.h (line 73–75)

#define CKERR i f ((e r r != kSCLError NoErr)) {\
STATUS LOG(”ERROR %d %s :%d \n” ,

err , FILE , LINE) ; \
goto done ; }

The structure of this macro implies that every call to such
a possibly failing function should store the result in a vari-
able named err, and should define a flag at the end of the
function named done. One could argue that this is a frag-
ile structure, but it appears to work throughout the code.
Except of course, in the cases where this call to the macro
CKERR is forgotten, so that the error is not caught and the
code continues to run. The consequence for the security of
the implementation is highly dependent on the context. We
have found a few omissions of CKERR, but we have not been
able to escalate these bugs into security exploits.

Fix. Again, the fix is simple: search for the string “err
=” and include CKERR where necessary.

5.6 Style issues
In this section, we look at some issues that affect the code,

but which are not necessarily bugs. These style issues will
make it very difficult to understand and thus maintain the
code. These style issues could lead to someone making a
change in the code that results in a bug, because they mis-
understood someone. Or someone interacting with the code
might have some incorrect assumptions about the function
they are using and will trigger some unexpected or unde-
fined behavior. In the long term, these style issues could
lead to application failure or even security vulnerabilities.

5.6.1. MAC length in the serializer. When inspecting
the calls to the CCM decryption function, something stands
out.

Listing 7: SCimpProtocol.c (line 2076–2081)

e r r = CCM Decrypt Mem(
scSCimpCipherAlgorithm (ctx−>c i phe rSu i t e) ,
key , scSCimpCipherBits (ctx−>c i phe rSu i t e)/4 ,
msgIndex , s izeof (msgIndex) ,
m−>msg , m−>msgLen ,
m−>tag , s izeof (m−>tag) ,
&PT, &PTLen) ; CKERR;

The length of the authentication tag is specified by the
length of the tag received in the message. In other words:

11We were not the only ones to notice: see https://github.
com/SilentCircle/silent-text/pull/2, which catches (only) a
few of the lines with this problem.

the sender of the message—or an attacker—can set this
length to any value they want! Actually, an attacker can
not set the length. The problem is that any length other
than 8 bytes will not be parsed correctly by the message
deserializer. Libscimp will protest and return a kSCLEr-

ror_Corrupt error. We think it is unwise to let the serial-
izer be responsible for any security features. Instead, the
tagSize parameter should be a constant value.

5.6.2. Warning/error handlers. One of the responsi-
bilities of the event handler is to handle warnings and er-
rors. We think that errors are an important part of how
the protocol works and they should be handled correctly by
the protocol implementation itself. The only function that
we could find that actually did something with the error (in-
stead of just aborting and passing the function along), is the
function sProcessTransition, although it does not update
the state when an error has occurred.

Much more sophisticated error handling is required. For
example, when an attacker injects out of order key nego-
tiation messages, the current approach is just to reset the
context including cs, which even leads to the man-in-the-
middle attack described in Section 3.3. A simple error han-
dling strategy would be to reset the SCimpContext without
deleting cs. Only then (if still necessary), should the error
be sent to the event handler.

Sometimes the errors do not get passed on to the error
handler, but the error simply gets ignored. For example, the
function sDoStartDH never assigns to the err variable. Both
contention handlers never check the error of the handlers
they call.

5.6.3. hcs in first key negotiation. In the first key ne-
gotiation, it is not necessary to compute the value hcsa. Ac-
cording to the documentation, the value is still computed, so
that an eavesdropper cannot distinguish the first key nego-
tiation from rekeying. However, in the first key negotiation,
the value cs is substituted with 0, making the value hcsa
public. Now it is trivial for an eavesdropper to distinguish a
first key negotiation from rekeying, by computing hcsa with
cs = 0 and comparing it with the value in the Commit mes-
sage. Generating a random value (as is documented but not
implemented) could introduce a timing attack, unless a ran-
dom value was generated for every rekeying as well, which
decreases performance. If the PKStart message is sent, the
fact that it is the first key negotiation is given away imme-
diately. A solution is to leave out the computations of the
hcs values in the first key negotiation.

One other thing becomes noticable in the implementation.
The initiator always checks the value of hcsb, by using cs = 0
when it is the first key negotiation. The responder only veri-
fies hcsa when rekeying, but does the comparison anyway. If
a timing attack (on distinguishing the first key negotiation
from rekeying) is no problem, than these checks can be left
out.

5.6.4. maca computed twice. The initiator computes
maca twice, once before sending the DH2 message and once
when receiving the Confirm message. The second computa-
tion is redundant and can be eliminated.

5.6.5. Message index. The message index makes it possi-
ble to handle out-of-order messages. It is derived from kdk2,
using the KDF. In our Proverif analysis we showed that the
protocol is secure when this value is made public. This in-

https://github.com/SilentCircle/silent-text/pull/2
https://github.com/SilentCircle/silent-text/pull/2

dicates that the value might as well be initialized at zero,
speeding up the implementation.

5.6.6. KDF vs MAC. Silent Circle uses a standard extract-
expand construction for deriving keys. Instead of naming
this as their KDF, they decided to relabel a MAC function
with fixed labels as a KDF, while it should have been called
expand. Their additional enhance “step” is not really a dif-
ferent step, it is really just a part of the extract step.

Silent Circle does not explain in its documentation why it
is necessary to make the Extract and Enhance steps separate
steps. The design could be simplified by including the value
cs in the extract step.

The confusing specification of the KDF lead to another
implementation bug. kdk2 = KDF′

kdk(Zx,“MasterSecret”,
“SCimp-ENHANCE”‖ ctx ‖ 0x00, 256). Note that the func-
tion KDF′ differs from the regular KDF function as it has
four arguments: the value Zx is prepended to the digested
value in the MAC computation. The value Zx was already
mixed in the value of kdk, so there appears to be no reason
to include it again in kdk2. Since the documentation does
not mention this parameter, it appears to be an implemen-
tation error and kdk2 should have been computed with the
regular KDF function.

5.6.7. KDF implementation. Code could be eliminated
where multiple calls to the MAC functions (init, update
and final) could be replaced by a single call to the KDF
(sComputeKDF). This happens for the computation of kdk2,
cs, ksnd,j and krcv,j (for j > 0).

The prototype of the KDF function itself could be sim-
plified as well. The L parameter is passed twice to sCom-

puteKDF: once as the hashLen (in bits) and once as the
outLen (in bytes). One would expect the equation
dhashLen/8e = outLen to always be true, but in reality it
is more often false (see also Section 5.6.8). The reason that
this does not break the application is that both sender and
receiver of messages use the same erroneous implementation
to derive keys.

5.6.8. Length inconsistencies. The following code frag-
ment illustrates a problem with length parameters that prop-
agates throughout the entire code-base:

Listing 8: SCimpProtocol.c (line 1136–1138)

unsigned long ctxStrLen = 0 ;
s i z e t kdkLen ;
int keyLen = scSCimpCipherBits (ctx−>c i phe rSu i t e) ;

The values ctxStrLen and kdkLen represent byte lengths,
while keyLen represents a length in bits. The types do not
match and are not computed consistently. For example,
ctxStrLen is computed as a size_t but (implicitly) con-
verted to an unsigned long. The length of key ksnd is actu-
ally 2 ∗ keyLen, so to convert to bytes, one needs to divide
by four. This confusing design has the consequence that the
computation of the KDF is often done wrong, with the value
of L not actually matching the hash length. This might also
have to do with the fact that the KDF function is sometimes
computed with the function sComputeKDF, while other times
it is bypassed and the MAC functions MAC_init, MAC_update
and MAC_final are used directly.

The LibTomCrypt function ccm_memory has the strange
property that it silently downgrades the length of the au-
thentication tag to the largest valid value of 16 bytes. The

wrapper functions, that are used for SCimp (see SCccm.c),
always pass the value 32. To add to the confusion, these
wrappers distinguish a value tagLen and tagSize, with the
following cryptic comment in the decryption wrapper:

Listing 9: SCccm.c (line 216–221)

// This w i l l only compare as many bytes of
// the tag as you spec i f y in tagS i ze
// we need to be care fu l with CCM to not
// leak key information , an easy way to do
// that i s to only export ha l f the hash .

i f ((memcmp(T, tag , t agS i z e) != 0))
RETERR(kSCLError CorruptData) ;

We could not find any literature about CCM mode leak-
ing key information. Nor is there a hash in sight to export.
The value tagSize turns out to be 8 bytes in both encryption
and decryption, which is only half as big as the tag that is
actually computed in both encryption and decryption. Ac-
cording to the NIST specification [12]: “Larger values of Tlen
provide greater authentication assurance [. . .]. The perfor-
mance tradeoff is that larger values of Tlen require more
bandwidth/storage”. An overhead of 8 bytes on a message
that is encoded in XML seems negligible to us. Even if it
is not, the correct parameter of 8 bytes should be passed to
the function ccm_memory—and not 32 bytes silently lowered
to 16.

5.6.9. Naming inconsistencies. Many inconsistencies
exist between names as well. A pointer to a SCimpContext

is called a SCimpContextRef, while a pointer to a SCimpMsg

is called a SCimpMsgPtr. To add to the confusion, it seems
an arbitrary choice whether to use this pointer type or to
use the C pointer syntax (*). All the SCimp version 1 code
calls the SCimpContext parameter that gets passed are called
ctx, while code that was introduced with version 2 refers to
it by the name scimp.

None of these issues are necessarily bugs, but they make
understanding and maintaining the code more difficult than
necessary. It is almost inevitable that in the long term, this
code base will lead to application bugs. It might already
have been the reason for past bugs.

5.6.10. Code comment/documentation. The code has
little documentation. The existing documentation in the
form of the whitepaper [21] is outdated and inconsistent,
both with itself and with the actual code of either version.
The messaging ecosystem document [19] is a good high-level
description of SCimp and the context in which it runs, but
lacks the details necessary for analysis of the protocol.

As an example: SCimp version 2 implemented a sync
mode for several functions, without any explanation. It
turns out to have nothing to do with the protocol itself, but
as Vinnie Moscaritolo explained to us: “sync mode is some-
thing we added to the API recently to allow android apps to
work a bit better. The android environment couldn’t handle
callbacks through the JNI very well, so we made a mode that
worked without callbacks.” In our opinion, this is something
that needs to be documented.

6. COMPARISON
SCimp is an implementation of SecureSMS [3] in XMPP.

The SecureSMS protocol took many ideas from existing pro-
tocols (most notably ZRTP [33] and OTR [6, 1]) and com-
bined them to be suitable for a mobile environment. Now

Table 1: Comparison of Secure IM protocols
X means the protocol provides the feature, × means it

does not, and E means it provides it but is insecure.
OTR SCimp (v1/v2) Signal

Data in first message × ×/E X
Forward secrecy X X/X X
Preshare public keys X ×/× X
Rekey each reply X ×/× X
Ratchet each message × X/X X
Elliptic curve crypto × X/X X

that SCimp has been discontinued, Silent Circle wrote their
own implementation12 of the Signal Protocol [13]. The re-
sults of a comparison between the protocols is given in Ta-
ble 1.

Although SCimp version 2 can send user data in the first
message, we have shown that this is insecure. Signal im-
proves the forward secrecy by hashing the message keys of
the ratchet keys. As SCimp is a SAS based protocol, users
cannot share public keys before initiating communication.
Note that elliptic-curve crypto does not necessarily mean
that the protocol is more secure, but its lower computational
requirements and smaller keysizes make it more suitable for
a mobile environment.

We refer the interested reader to [29] for a more detailed
explanation of these results and to [13] for a detailed analysis
of Signal.

7. FORMAL VERIFICATION
The ProVerif models of SCimp version 1 and Progressive

Encryption are available on GitHub:

github.com/sebastianv89/scimp-proverif

SCimp version 1 shares some structure with ZRTP, of which
the secrecy was modelled in ProVerif in [7]. We go beyond
that model, by formalizing the SAS confirmation instead of
having to rely on an ad-hoc argument that the SAS prevents
a man-in-the-middle attack. In addition, our models cover
authenticity, forward secrecy, future secrecy and deniabil-
ity of the protocol and we model Progressive Encryption.
ProVerif confirms that SCimp version 1 is secure and finds
the man-in-the-middle attack on Progressive Encryption de-
scribed in Section 3.1.

8. CONCLUSIONS
This paper found several weaknesses in the SCimp pro-

tocol and implementation. Despite the high price tag of
Blackphone and Silent Text, the quality of crypto and code
looks worse than for OTR or Signal, which is yet another
confirmation of the importance of open code and detailed
security analysis.

9. ACKNOWLEDGMENTS
This work was done while Verschoor was a student at

TU/e. A much extended version can be found in his mas-
ters thesis [29]. This work was supported in part by the Eu-
ropean Commission through H2020-ICT-645421 ECRYPT-
NET. This work was supported in part by Canada’s NSERC

12We did not inspect the Silent Circle implementation, just
the original implementation [22] by Open Whisper Systems.

CREATE Program. IQC is supported in part by the Gov-
ernment of Canada and the Province of Ontario.

10. REFERENCES
[1] C. Alexander and I. Goldberg. Improved user

authentication in off-the-record messaging. In
Proceedings of the 2007 ACM Workshop on Privacy in
Electronic Society, WPES ’07, pages 41–47, New York,
NY, USA, 2007. ACM.

[2] Apple Inc. Local and Remote Notification
Programming Guide, 2015.
https://developer.apple.com/library/ios/
documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/RemoteNotificationsPG.pdf.

[3] G. Belvin. A Secure Text Messaging Protocol.
Master’s thesis, John Hopkins University, 2011.
https://eprint.iacr.org/2014/036.

[4] D. J. Bernstein. Cache-timing attacks on AES.
http://cr.yp.to/papers.html#cachetiming, 2005.

[5] T. Beth and Y. Desmedt. Identification tokens – or:
Solving the chess grandmaster problem. In CRYPTO,
volume 537 of LNCS, pages 169–177. Springer, 1990.

[6] N. Borisov, I. Goldberg, and E. Brewer.
Off-the-Record Communication, or, Why Not to Use
PGP. In WPES ’04, pages 77–84. ACM, 2004.

[7] R. Bresciani and A. Butterfield. A formal security
proof for the ZRTP protocol. In Proceedings of the 4th
International Conference for Internet Technology and
Secured Transactions, ICITST 2009, London, UK,
November 9-12, 2009, pages 1–6, 2009.

[8] J. Callas. Building Hardware We Are Proud Of, 2015.
https://web.archive.org/web/20151024104841/http:
//hardwear.io/wp-content/uploads/2015/10/
Building-Hardware-We-Are-Proud-Of-by-Jon-Callas.
pdf.

[9] L. Chen. NIST SP 800-108: Recommendation for Key
Derivation Using Pseudorandom Functions, 2009.

[10] Y. Desmedt, C. Goutier, and S. Bengio. Special uses
and abuses of the Fiat-Shamir passport protocol. In
CRYPTO, volume 293 of LNCS, pages 21–39.
Springer, 1987.

[11] W. Diffie, P. C. van Oorschot, and M. J. Wiener.
Authentication and authenticated key exchanges.
Designs, Codes and Cryptography, 2(2):107–125, 1992.

[12] M. Dworkin. NIST SP 800-38C: Recommendation for
Block Cipher Modes of Operation: The CCM Mode
for Authentication and Confidentiality, 2004.

[13] T. Frosch, C. Mainka, C. Bader, F. Bergsma,
J. Schwenk, and T. Holz. How secure is TextSecure?
In EuroS&P, pages 457–472. IEEE, 2016.

[14] Google. Cloud Messaging, 2015.
https://developers.google.com/cloud-messaging/.

[15] J. Hildebrandt and P. Saint-Andre. XEP-0033:
Extended Stanza Addressing. Technical report, XMPP
Standards Foundation, September 2004.
https://xmpp.org/extensions/xep-0033.html.

[16] S. Jaeckel. libtom/libtomcrypt, 2015.
https://github.com/libtom/libtomcrypt (commit
16f397d55c9f4971a66a7ce9d87d0305ab45eaa7).

[17] H. Krawczyk and P. Eronen. HMAC-based
Extract-and-Expand Key Derivation Function

https://github.com/sebastianv89/scimp-proverif
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/RemoteNotificationsPG.pdf
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/RemoteNotificationsPG.pdf
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/RemoteNotificationsPG.pdf
https://eprint.iacr.org/2014/036
http://cr.yp.to/papers.html#cachetiming
https://web.archive.org/web/20151024104841/http://hardwear.io/wp-content/uploads/2015/10/Building-Hardware-We-Are-Proud-Of-by-Jon-Callas.pdf
https://web.archive.org/web/20151024104841/http://hardwear.io/wp-content/uploads/2015/10/Building-Hardware-We-Are-Proud-Of-by-Jon-Callas.pdf
https://web.archive.org/web/20151024104841/http://hardwear.io/wp-content/uploads/2015/10/Building-Hardware-We-Are-Proud-Of-by-Jon-Callas.pdf
https://web.archive.org/web/20151024104841/http://hardwear.io/wp-content/uploads/2015/10/Building-Hardware-We-Are-Proud-Of-by-Jon-Callas.pdf
https://developers.google.com/cloud-messaging/
https://xmpp.org/extensions/xep-0033.html
https://github.com/libtom/libtomcrypt

(HKDF). RFC 5869, 2010.
https://www.rfc-editor.org/rfc/rfc5869.txt.

[18] V. Moscaritolo. Silent Circle Instant Messaging
Protocol - libscimp API guide, 2012.
https://github.com/SilentCircle/silent-text/blob/
master/Documentation/ (commit
bee6f4955252995e07b761ecd40bf68e64d809f1).

[19] V. Moscaritolo. Silent Circle Messaging Ecosystem,
2014. https://github.com/SilentCircle/silent-text/
blob/master/Documentation/ (commit
bee6f4955252995e07b761ecd40bf68e64d809f1).

[20] V. Moscaritolo. Silent Text 2.0: The next generation
of private messaging, 2014.
https://web.archive.org/web/20150506152939/https:
//blog.silentcircle.com/
silent-text-2-0-the-next-generation-of-private-messaging/.

[21] V. Moscaritolo, G. Belvin, and P. Zimmermann. Silent
Circle Instant Messaging Protocol - Protocol
Specification, 2012. https://github.com/SilentCircle/
silent-text/tree/master/Documentation (commit
bee6f4955252995e07b761ecd40bf68e64d809f1).

[22] Open Whisper Systems. Signal Protocol Library for
Java/Android, September 2015. https:
//github.com/WhisperSystems/libsignal-protocol-java
(commit 01bc1eb37be2113f78392df4bed93ff173aee98e).

[23] M. Shirvanian and N. Saxena. Wiretapping via
mimicry: Short voice imitation man-in-the-middle
attacks on crypto phones. In ACM-CCS, pages
868–879, 2014.

[24] Silent Circle. SCIMP | Silent Circle.
https://web.archive.org/web/20150718145410/https:
//silentcircle.com/scimp-protocol.

[25] Silent Circle. Software: Communicate privately on
Silent OS, iOS, and Android. https:
//web.archive.org/web/20150816133352/https://www.
silentcircle.com/products-and-solutions/software/.

[26] Silent Circle. What is Silent Phone?
https://support.silentcircle.com/customer/en/portal/
articles/2118686-what-is-silent-phone-.

[27] Silent Circle. Encrypted text messaging, 2015.
https://github.com/SilentCircle/silent-text (commit
bee6f4955252995e07b761ecd40bf68e64d809f1).

[28] T. St Denis. LibTom. http://libtom.net.

[29] S. R. Verschoor. Secure messaging in mobile
environments. Master thesis, Technische Universiteit
Eindhoven, 2015. http://alexandria.tue.nl/extra1/
afstversl/wsk-i/Verschoor 2016.pdf.

[30] D. Whiting, R. Housley, and N. Ferguson. Counter
with CBC-MAC (CCM). RFC 3610, 2003.

[31] Z. Wilcox-O’Hearn. Open letter to Phil Zimmermann
and Jon Callas of Silent Circle, re: Silent Mail
shutdown. http://lists.randombit.net/pipermail/
cryptography/2013-August/004982.html.

[32] Z. Wilcox-O’Hearn. Attacks on Convergent
Encryption. Technical report, Tahoe-LAFS, 2008.
https:
//tahoe-lafs.org/hacktahoelafs/drew perttula.html.

[33] P. Zimmerman, A. Johnston, and J. Callas. ZRTP:
Media Path Key Agreement for Unicast Secure RTP.
RFC 6189, RFC Editor, April 2011.

https://www.rfc-editor.org/rfc/rfc5869.txt
https://github.com/SilentCircle/silent-text/blob/master/Documentation/
https://github.com/SilentCircle/silent-text/blob/master/Documentation/
https://github.com/SilentCircle/silent-text/blob/master/Documentation/
https://github.com/SilentCircle/silent-text/blob/master/Documentation/
https://web.archive.org/web/20150506152939/https://blog.silentcircle.com/silent-text-2-0-the-next-generation-of-private-messaging/
https://web.archive.org/web/20150506152939/https://blog.silentcircle.com/silent-text-2-0-the-next-generation-of-private-messaging/
https://web.archive.org/web/20150506152939/https://blog.silentcircle.com/silent-text-2-0-the-next-generation-of-private-messaging/
https://github.com/SilentCircle/silent-text/tree/master/Documentation
https://github.com/SilentCircle/silent-text/tree/master/Documentation
https://github.com/WhisperSystems/libsignal-protocol-java
https://github.com/WhisperSystems/libsignal-protocol-java
https://web.archive.org/web/20150718145410/https://silentcircle.com/scimp-protocol
https://web.archive.org/web/20150718145410/https://silentcircle.com/scimp-protocol
https://web.archive.org/web/20150816133352/https://www.silentcircle.com/products-and-solutions/software/
https://web.archive.org/web/20150816133352/https://www.silentcircle.com/products-and-solutions/software/
https://web.archive.org/web/20150816133352/https://www.silentcircle.com/products-and-solutions/software/
https://support.silentcircle.com/customer/en/portal/articles/2118686-what-is-silent-phone-
https://support.silentcircle.com/customer/en/portal/articles/2118686-what-is-silent-phone-
https://github.com/SilentCircle/silent-text
http://libtom.net
http://alexandria.tue.nl/extra1/afstversl/wsk-i/Verschoor_2016.pdf
http://alexandria.tue.nl/extra1/afstversl/wsk-i/Verschoor_2016.pdf
http://lists.randombit.net/pipermail/cryptography/2013-August/004982.html
http://lists.randombit.net/pipermail/cryptography/2013-August/004982.html
https://tahoe-lafs.org/hacktahoelafs/drew_perttula.html
https://tahoe-lafs.org/hacktahoelafs/drew_perttula.html

	Introduction
	History of SCimp
	Advertised security properties
	Results
	Disclosure and updates

	Protocol description
	Key negotiation
	Rekeying
	Sending User messages
	Progressive Encryption
	SCimp group conversations

	Results
	Persistent man-in-the-middle attack onSCimp version 2
	Man-in-the-middle on SCimp PubKeymode
	Desynchronizing clients
	Identity misbinding attack
	Out of order messages
	First key negotiation leakage
	Multiple devices

	Siren
	Signed messages
	Cloud storage

	Implementation details
	High level overview
	State machine
	CCM Encryption
	Side-channels
	Software bugs
	Style issues

	Comparison
	Formal Verification
	Conclusions
	Acknowledgments
	References

