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Abstract

The assumed computationally difficulty of factoring large integers forms the basis of security
for RSA public-key cryptography, which specifically relies on products of two large primes or
semi-primes. The best-known factoring algorithms for classical computers run in sub-exponential
time. Since integer factorization is in NP, one can reduce this problem to any NP-hard problem,
such as Boolean Satisfiability (SAT). While reducing factoring to SAT has proved to be useful for
studying SAT solvers, attempting to factor large integers via such a reduction has not been found
to be successful.

Shor’s quantum factoring algorithm factors any integer in polynomial time. Large-scale fault-
tolerant quantum computers capable of implementing Shor’s algorithm are not yet available, so
relevant benchmarking experiments for factoring via Shor’s algorithm are not yet possible. In
recent years, however, several authors have attempted factorizations with the help of quantum
processors via reductions to NP-hard problems. While this approach may shed some light on
some algorithmic approaches for quantum solutions to NP-hard problems, in this paper we study
and question the practical effectiveness of this approach for factoring large numbers. We find no
evidence that this is a viable path toward factoring large numbers, even for scalable fault-tolerant
quantum computers, as well as for various quantum annealing or other special purpose quantum
hardware.

1 Introduction
In this work we focus on the problem of factoring semi-primes with SAT-solvers. A semi-prime N
is a composite of two primes p and q which are roughly of equal size. These particular composites
are conjectured to be hard to factor, in the sense that no (classical) algorithm or heuristic is known
to factor semi-primes using only polynomially many resources. This problem has great relevance for
the RSA cryptosystem [49], a widely-deployed public-key cryptosystem. The RSA cryptosystem is
founded upon the difficulty of factoring integers: the existence of an efficient factoring algorithm would
completely break its security.
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Some authors have proposed an alternative approach they refer to as quantum factoring, and it
is occasionally even cited in benchmarks for factoring [61]. In this paper, we explain why these ap-
proaches, while potentially helpful for studying quantum SAT-solving, are not likely a viable approach
to integer factorization and, very importantly, are not a meaningful benchmark for people interested
in quantum cryptanalysis of cryptosystems based on the integer factorization problem.

We attempt to generously extrapolate the kinds of speed-ups one might expect for a range of
quantum solvers, and find no evidence that this is a viable path toward factoring large numbers,
even for scalable fault-tolerant quantum computers, as well as for various quantum annealing or other
special purpose quantum hardware.

Some researchers only implement quantum factoring for the purposes of benchmarking the ex-
perimental apparatus. There are several more relevant algorithms to implement for the purposes of
benchmarking, such as work on randomized benchmarking [24] or implementations of quantum error
correction. Framing the experiments as implementations of quantum factoring can easily be misin-
terpreted as a meaningful benchmark toward large-scale integer factorization, and we explain in this
article why they are not.

For many years cryptographers have tracked and benchmarked progress in classical factorization
and attempted extrapolations with an interest in estimating when RSA schemes with moduli of a
given length may be broken using the number field sieve [34, 2]. The extrapolations take into account
estimates of computing power increase and algorithmic improvements.

This paper highlights why none of the current literature on experimental implementations of
quantum factoring serves the same purpose. In the absence of a breakthrough that demonstrates
factoring can be meaningfully sped up without a fault-tolerant quantum computer, this sort of tracking
of the size of numbers quantumly factored will only be meaningful after the implementation of several
logical qubits.

One caveat and challenge with tracking and extrapolating is that once fault-tolerant quantum
computers start factoring small numbers, a constant factor increase in available quantum resources
brings a constant factor increase in the size of the number that can be factored (i.e. we go from being
able to factor n-bit numbers to being able to factor (cn)-bit numbers for some c > 1 that depends
on the factor of increase in time and memory) because Shor’s algorithm runs in polynomial time. On
the other hand, a constant factor increase in classical computing resources only implies being able to
factor numbers that are a few bits larger using the number field sieve (i.e. we go from being able to
factor n-bit numbers to being able to factor (n+o(n2/3))-bit numbers). Given these quantum scalings,
it will be much harder to reliably extrapolate the size of numbers that can be quantumly factored,
and a relatively small change in computing resources or a relatively small algorithmic improvement
can have a significant impact on the size of the number that can be quantumly factored. This is one
reason why it is valuable to have post-quantum cryptography ready for wide-scale deployment before
fault-tolerant quantum computers are available.

The Boolean satisfiability problem (SAT) asks whether there exists an assignment to the Boolean
variables of a given propositional logic formula such that the formula evaluates to TRUE. This problem
was the first that was proven to be NP-complete [16, 36]. Since no algorithms with polynomial runtime
for NP-hard problems are known, solving NP-hard problems has long been considered to be intractable
for real-world computers. Despite this result, coming from asymptotic analysis, modern SAT-solvers
perform very well on solving large SAT instances originating from industry and academics, with
formulas that have up to a million clauses [6]. At the moment of writing there exists no good general
method or metric to predict if a given SAT instance is hard to solve. For practical applications it
therefore makes sense to assess the performance of the solvers on the investigated instances by careful
benchmarking instead of doing asymptotic analysis.

The original goal of this project was to encode the RSA factoring challenges [29] to SAT instances
and see how well modern SAT solvers would perform on those instances. The smallest semi-prime
of these challenges is RSA-100: a 100-digit or 330-bit number. This number was factored in a few
days almost immediately after the challenge was posted [21] in 1991, whereas the current record for
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factoring stands at factoring RSA-768: a 768-bit semi-prime [33]. The intention was to compare
current state-of-the-art SAT solvers against the numerical results from 1991, but it turns out that
even the smallest RSA semi-prime poses too big of a challenge for these solvers.

1.1 Contributions
This work provides a numerical analysis on the hardness of factoring numbers by solving the corre-
sponding satisfiability problem, thereby confirming the folklore that factoring numbers does indeed
give “hard” SAT instances. This is done by measuring the speed of the currently fastest SAT solver.
We justify the choice of numerical analysis over theoretical asymptotic analysis by applying some
common analysis tools from modern SAT solving theory and the observation that the tools provide
no good prediction for the actual runtime. We extrapolate the numerical results to investigate the
asymptotic behavior of the solver and compare the results with the asymptotics of factoring with
numerical algorithms. Finally, the results are used to estimate an upper bound on the speedup that
can be achieved on this specific problem using currently known quantum algorithms.

As a minor contribution, we developed a tool that can create smaller SAT instances for factor-
ing1 than any other publicly available tool. This tool and scripts for generating semi-primes and
reproducing the results of this paper have been made available online [60].

2 SAT instances
An instance of the SAT problem is a formula in Boolean propositional logic: every variable (x) can
take the value TRUE or FALSE as specified by the respective literals x and x̄. This work considers the
equivalent [32] CNF-SAT where all formulas are in conjugate normal form (CNF): each formula must
be a conjunction of disjunctions of literals.2 The disjunctions are often called clauses. A satisfying
assignment gives a value to each variable such that at least one literal evaluates to TRUE in every
clause. All tools we used for generating and solving SAT instances work with the DIMACS format
which specifies formulas in CNF form.

Another (equally hard) formulation of the problem is called CircuitSAT: given a Boolean circuit
with a single output, is there an input such that the output is TRUE? One can translate any Boolean
circuit into a Boolean formula: assign a variable to each wire and let the clauses describe the gates.
For example the Turing complete NAND-gate with input wires x, y and output wire z has the
corresponding formula (x ∨ z) ∧ (y ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄). Simulating gate execution is done by fixing
a value on the input wires: for example by adding the clauses x∧ ȳ. A SAT-solver can examine those
five clauses and find that the only satisfying assignment sets z = TRUE. Combining gates to make a
circuit is done by reusing output variables of earlier gates as input variables in later gates.

More interesting is to fix a value on the output variables of a circuit and ask the SAT-solver to
find a satisfying assignment. For example adding the clause z to the NAND-gate gives three satisfying
assignments: x∧ȳ, x̄∧y, and x̄∧ȳ. In general a circuit might have zero or more satisfying assignments.
Effectively the SAT-solver is finding preimages to the function described by the circuit. An immediate
cryptanalytic application that springs to mind is finding preimages to secure hash functions: indeed
this has been done with varying results [41, 42, 23]. More general cryptanalytic applications can
be found throughout literature [40] and occur in modern benchmarks [6], although asymmetrical
cryptographic primitives are rarely targeted.

This work examines circuits that encode the multiplication of two integers p and q. We fix the
multiplication output bits of the circuit to the bit-values of the semi-prime N and ask the SAT-solver
to find a satisfying assignment. Only two exist3: those representing N = pq and N = qp, so from the
assignment one can read the factorization of N . For the remainder of this paper n represents the size

1using long multiplication
2Further restricting each clause to exactly three literals would give the equivalent 3SAT problem.
3The specific encoding ensures the trivial solutions N = 1N and N = N1 do not give satisfying assignments.
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of N in bits. We limit p and q similar to how the RSA cryptosystem limits its parameters: both need
to be equally sized primes. We interpreted this last requirement to mean that their most significant
bit may differ by at most one position.

2.1 Encoding
Despite the asymptotic worst-case exponential runtime associated with SAT instances, it turns out
to be non-trivial to generate “hard” SAT instances: instances where the solver runtime grows expo-
nentially in the number of variables. For many instantiations of the SAT problem, it turns out that
the average case can be solved relatively efficient with modern SAT solvers. Specialized tools such
as ToughSat [64] exist that can generate SAT instances that are hard on average, based on problems
such as integer factorization.

Multiplying larger integers requires larger circuits, which leads to instances with more variables
and clauses, which leads to longer solving times. However, there are many choices to make when
computing multiplication in a circuit and each choice will lead to different encodings of the SAT
instance and a different solver runtime. For SAT solvers in general it turns out that the details of the
encoding of a problem (beyond metrics such as number of variables and clauses) can have a significant
impact on the solver runtime. The first choice is to consider different multiplication algorithms: a
simple one and a more complex encoding that in theory leads to smaller instances.

Long multiplication (or schoolbook multiplication) is computed by multiplying p by each digit (bit)
of q and adding the shifted results. For multiplying two m-bit numbers (where m = n/2) this requires
Θ(m2) bitwise multiplications and additions. The exact number of operations depends mainly on the
circuit used for addition: our tool for generating instances [60] minimizes the number of both variables
and clauses by maximizing the number of full-adders used in the circuit. Counting the variables in the
generated instances and applying regression reveals that the number of variables grows approximately
as 0.750n2 + 0.496n − 2.05 and similarly the number of clauses grows as 4.25n2 − 4.01n − 9.87 with
on average 3.31 literals per clause.

Karatsuba multiplication [31] asymptotically improves upon long multiplication by a divide-and-
conquer strategy and requires only Θ(mlog2 3) multiplications at the cost of requiring more additions.
The instances we tested were generated by the ToughSat application [64] and contain approximately
2.59nlog2 3 − 7.57n + 8.75 variables and 61.5nlog2 3 − 170n − 386 clauses with on average 6.77 literals
per clause. Inspection of the generated instances reveals that the Karatsuba circuits were built from
more complex gates, which explains why there are more literals per clause. It is likely that building
the Karatsuba circuit with a similar gate set would increase the number of variables and clauses by
another (constant) factor.

Asymptotically the Karatsuba algorithm is not the best known algorithm and is outperformed
by for example Toom-Cook or FFT-multiplication. Given that these methods introduce additional
overhead for small instances and given the minor difference in the runtime of long multiplication and
Karatsuba (see Section 3), it appears that the cross-over point where these algorithms are faster vastly
exceeds a feasible instance.

Hardware design provides alternative multiplication algorithms, which are often optimized to mini-
mize latency and for various other physical constraints. There is no indication that these optimizations
are related to optimizations that lead to smaller and/or easier SAT instances. In fact our adder en-
coded in the SAT instances minimizes the number of half-adders required, which gives the smallest
number of variables and clauses and results in the fastest SAT solver times, but the resulting clauses
encode a circuit that would give extremely high latency if built from physical components.

Since the multiplication circuit is the same for each semi-prime of the same bitlength there is an
alternative strategy we can apply when we want to factor only one of many semi-primes. We encode
the multiplication circuit once and then “fanout” the resulting wires to circuits that check if the output
equals a semi-prime. Those results are combined with a large OR-gate, so that the entire instance
evaluates to TRUE if the multiplication outcome is equal to any of the semi-primes. By inspecting
which values were assigned on the circuit input wires by the solver we learn which of the semi-primes
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it actually factored. The idea behind this encoding is that if there is an easy semi-prime somewhere
in the input, then the solver itself may detect this and focus on solving that instance. As long as
we encode only polynomially many semi-primes in the instance, the total instance size will remain
polynomial.

An alternative solution for factoring numbers with SAT is to encode the integer division circuit
N/p = q+r and fixing the input value N and output remainder r = 0. The rationale for this encoding
is that the solver would only have to assign values to the bits of p and can then deterministically
evaluate the entire circuit and check if the remainder is zero. However, in practice this encoding
leads to substantially larger SAT-instances and tests with various solvers indicate that solving such
instances is significantly slower, so we did not investigate this encoding any further.

A more promising approach is to reduce some subroutine of the NFS to SAT where there is little
or no increase in complexity by mapping to SAT, analogous to the approach taken in [8]. In this case,
even a small quantum speed-up will lead to a faster integer factorization algorithm. This approach is
studied in detail in [44].

3 Classical Solvers
Modern SAT solvers come in two classes. Conflict-Driven Clause Learning (CDCL) [19, 18] combines
conflict analysis with branch heuristics to systematically backtrack the search-space of an instance.
Stochastic local search approaches such as employed by WalkSAT [51] or simulated annealing combine
randomized assignments with probabilistic updates to find assignments that minimize the number of
clauses violated. We found that for the semi-prime instances CDCL solvers outperformed the local
search solvers by an order of magnitude. The scope of this project is limited to the black-box analysis
of publicly available SAT solvers. This means we will not investigate the internals of the solvers for
analysis of the runtime, nor do we allow domain-specific knowledge to speed up solver times.

We tested the MapleCOMSPS [38] SAT solver for the simple reason that at the time of running
the benchmarks this was the fastest solver according to the SAT Competition 2016 [27]. We compiled
and ran the solver with default settings, except for the random seed which was fixed for each call to
the solver to ensure reproducibility of the results.

Another solver that we tested is CryptoMiniSat 5 [55], because it has “Automatic detection of
cryptographic [. . . ] instances” [54]. One might consider this to be cheating by using domain-specific
knowledge and therefore it should not be included in the benchmarks. CryptoMiniSat appears to focus
on symmetric cryptography and appears to provide no speedup on public cryptography instances,
which we confirmed during an initial round of benchmarking. We inspected the (partial) results and
found that CryptoMiniSat 5 was consistently being outperformed by MapleCOMSPS. For this reason
we did not further analyze this solver, but the results can be found in Appendix A.

All measurements were performed on a ThinkPad laptop with a 64-bit Intel Core i5–4200M
(Haswell) CPU running at 2.50GHz. All measurements were executed sequentially and on a single
core. Where applicable we use regression to fit a line to the data and the goodness-of-fit is quantified
by the r2 parameter.

3.1 Results
Usually when analyzing the runtime of a randomized algorithm we are interested in the expected
runtime: the mean computed over the random bits. We do this by factoring the same number
multiple times using a different PRNG-seed for the solver and average the runtime to compute the
expected runtime numerically. We are interested in the asymptotics: the growth of the runtime as a
function of the size of its input, so we group the semi-primes by their bitlength n (100 semi-primes per
bitlength) and plot the mean runtime of solving five times. The results are given in Figure 1a and are
showing an exponential trend. The green line is fitted against the median runtime of all semi-primes
of the same bitlength.
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(b) Karatsuba multiplication

Figure 1: Runtime of MapleCOMSPS on factoring semi-primes.

We repeated the same experiment for multiplication with the Karatsuba algorithm. The results
are given in Figure 1b: note that asymptotic runtime has improved somewhat over schoolbook mul-
tiplication at the cost of a larger constant. We conclude that changing the multiplication algorithm
does not make factoring with SAT solvers efficient. Since the larger constant dominates the runtime
at this small scale, we will consider schoolbook multiplication for the remainder of our experiments.
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Figure 2: Minimum runtime of MapleCOMSPS on factoring semi-primes using schoolbook multipli-
cation.

An alternative strategy for factoring is to run several solvers in parallel and wait for the first one
to return a solution. We simulate this strategy by taking the minimum solver time of solving the
same instance with the solver initialized with 100 different random seeds for 100 semi-primes per
bitlength: the results are given in Figure 2. Asymptotically the runtime became worse by employing
this strategy. Note that this strategy does push down the constant by approximately 26.1. Since this
is smaller than 100 it does not lead to a lower expected runtime on this small scale when we consider
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the total runtime of all parallel solvers.
We can also see in Figure 2 that some semi-primes are significantly easier to solve than others

with this strategy. Even if we only manage to factor some semi-primes that may be important to
(for example) cryptography. For this method to be asymptotically efficient, it is required that the
runtime is pushed down exponentially for more than just negligibly many cases. To see if it does
we can inspect the distribution of the solver runtime given different seeds. Here we focus on three
different semi-primes4: the easiest, average and hardest semi-prime from the 100 semi-primes of 35
bits, where hardness is defined by the expected (mean) solve time computed over 360 seeds.
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Figure 3: Histogram of the MapleCOMSPS runtime on factoring semi-primes using schoolbook mul-
tiplication.

Although no strong conclusions should be drawn from the results in Figure 3a, the distribution does
suggest that running a few parallel solvers may lower the total runtime. To see if it may be considered
efficient we again inspect the distribution but this time on a logarithmic scale: see Figure 3b.

This data suggests that even if the method could push down the runtime significantly for any
semi-prime, it only does so with negligible probability. Another way of interpreting this data is that
employing parallel SAT solvers to factor a semi-prime does not appear to be better than employing a
single solver.

The last strategy we investigate is that of encoding multiple semi-primes into a single instance.
We encoded 100 semi-primes per bitlength in each instance and solved it 100 times using different
seeds. The results are given in Figure 4 Note that whereas the vertical boxplots in previous plots
show a distribution over different primes, here a distribution over different solver PRNG-seeds is
shown. From the data we conclude that this strategy is less efficient than solving instances with a
single semi-prime. From inspection of the solver solution we can see which semi-prime was factored
(see [60]). This reveals that some semi-primes in the same instance are factored more often than
others, suggesting that these are easier to factor by the solver, although we note that these are not
“easy enough” to make the overall method efficient.

3.2 Patterns
The above results support that it is hard on average to factor a number with SAT solvers, but we can
also observe that some numbers are easier to factor than others. It is an interesting question whether
there is some structure in the semi-primes that is picked up by solver that allows it to factor more
efficiently or whether the solver’s heuristic choices accidentally lead to a faster solution. We try to

4the distribution for all other semi-primes can be generated at [60]
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Figure 4: Runtime of MapleCOMSPS on factoring one of 100 semi-primes encoded in each instance
using schoolbook multiplication.

answer this question by inspecting the instances using two analytic methods from the SAT literature
(backdoors and community structure) and we do some manual inspection of the instances. Because
we are interested in the fastest solver time, we focus on the minimum solver time per instance given
different random seeds.

3.2.1 Backdoors

Backdoors in SAT instances were introduced by Williams, Gomes and Selman [62]. A backdoor is a
subset of variables such that setting these variables to any value allows a so-called subsolver to assert
if the entire formula is satisfiable in polynomial time. If the solver can find such a backdoor of size
k with a subsolver that runs in time l, the entire solver can run in time O(l2k). Any CircuitSAT
instance has a trivial backdoor in the form of the input wires/variables: set these and the rest of
the clauses can be determined deterministically.5 A backdoor subset for CircuitSAT therefore only
becomes interesting when it is smaller than the set describing the input variables.

Every instance has n input wires, but the solver runtime suggests that a backdoor of k ≈ n/2
variables was found. Given the structure of the problem this is not surprising (division to find
the other k input bits only takes polynomial time), but it is somewhat surprising given that it is
unlikely that the SAT solver was programmed to perform this division. More meaningful analysis of
this observation would require inspecting the internals of the solver to look for potential subsolvers
and backdoor detection capabilities. We consider this outside the scope of this project. We simply
conclude that even if a backdoor of size n/2 is found then the runtime of the SAT solver would still
be exponential and therefore would not impact the security of RSA.

3.2.2 Community structure

A SAT instance can be represented as a graph where each variable is a vertex and an edge is drawn
between vertices when the variables occur in the same graph. The community structure of a graph
is often characterized by a quality metric Q (also known as the modularity of the graph). According
to Newsham, Ganesh, Fischmeister, Audemard and Simon [45] the community structure of a SAT

5This is why we also encoded a division circuit: the input to that circuit contains one prime instead of two.
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instance should provide us with a good prediction on how hard it is to solve that instance: instances
are harder to solve when 0.05 ≤ Q ≤ 0.12.

An immediate problem that occurs when applying the above theory to the generated circuits is
that all instances for semi-primes of the same bitlength have the same structure: the encoded circuit
is simply an m by m bit multiplier. Therefore, we compute the community structure only on the
instances after they are simplified by the solver’s preprocessor. We approximate the value of Q with
the greedy algorithm by Clauset, Newman and Moore [15].
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Figure 5: Solver times per community structure. We only display the results for some values of n to
avoid more clutter, but similar results hold for all n.

Even after this preprocessing step the instances for long multiplication have too little variation to
conclude anything about the relation between Q and solver time. For some Karatsuba instances the
results are given in Figure 5. The results are grouped according to the bitlength n and per group
linear regression is applied to each group. The low r2-values suggest there is no relation between
modularity and solver time for these instances.

Interestingly, the values of Q are relatively high and far outside the range 0.05 ≤ Q ≤ 0.12 for
which the instances were conjectured to be hard, yet the instances are still hard to solve. The above
data leads to the conclusion that the community structure does not provide a good prediction for
solver runtime when applied to SAT instances that encode multiplication circuits.

3.2.3 Other metrics

Besides the above metrics that can be computed on any SAT instance, one might consider if there
is any correlation between metrics that apply only to this specific use case. In particular we are
interested if there is any pattern in N , p and/or q that the solver is able to exploit for a faster solving
time. Since SAT instances are defined over Boolean variables we considered the Hamming weight of:
N , p, q, and p ⊕ q. We also measure if the solver is able to pick up on some patterns that make
a number easier to factor according to number theoretic methods (such as Pollards p − 1 method):
smoothness of p − 1, smoothness of q − 1, |p − q|, and logN . We measured the correlation with the
solver time (see Appendix B for details). No metric shows any significant correlation.

3.3 Comparison to number-theoretical methods
One can put the above results in context by comparing the absolute runtime to that of other number-
theoretical results. Using SageMath [20] we measured the runtime of two approaches: factoring with
the built-in factor function: Figure 6a and factoring by trial division: Figure 6b.
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Figure 6: Runtime of factoring using numerical methods. No randomization was applied for obtaining
these results.

SageMath is able to factor almost all semi-primes up to a 100 bits in under 0.025 seconds. The
tested semi-primes are so small that the asymptotic behavior of the underlying algorithm is not even
visible yet, so there is no point in extrapolating these results. In fact the crossover point where the
number field sieve (NFS) is faster than asymptotically slower methods such as the quadratic sieve and
the elliptic-curve method is much larger than 100 bits, so that SageMath is not even using NFS to
factor these small numbers. Instead, we refer to the literature to find that the best classical factoring
algorithm (the general number field sieve [35]) runs in LN [1/3, (64/9)

1/3
] and this was indeed used to

factor a 768-bit RSA modulus in approximately two-thousand core-years [33], with one core being a
2.2 GHz AMD Opteron.

The timing of factoring using trial division is shown in Figure 6b. The results reveal an expo-
nential trend and with a much smaller constant than the SAT solver. On this small scale on which
measurements were performed, trial division easily outperforms the SAT solvers. The asymptotic
runtime of the methods are so close together that we cannot meaningfully extrapolate the results to
find a cross-over point where the SAT solvers become faster than trial division. We therefore cannot
rule out that factoring with classical SAT solvers is always slower than trial division.

4 Quantum Solvers
State of the art classical factoring algorithms have super-polynomial runtime LN [1/3, (64/9)1/3] [35],
whereas Shor’s algorithm [52] runs in polynomial time. This algorithm requires a fault-tolerant quan-
tum computer and no scalable version has been implemented yet. Shor’s algorithm has profound
practical implications for currently deployed public-key cryptography such as RSA and the timing of
the factoring of 1024-bit, 2048-bit or even larger semi-primes is of great practical significance for both
contemporary and future security systems [43]. Mitigations for future systems and current systems
requiring long-term security are being researched by the field of post-quantum cryptography [9, 13, 14].

An interesting notion of quantum computing has been proposed by Farhi et al. [26] in the form of
adiabatic quantum computers. It was suggested that adiabatic quantum algorithms may be able to
outperform classical computers on hard instances of NP-complete problems [25]. Since then, adiabatic
quantum computation (a generalization of the adiabatic optimization explored deeply by Farhi et al.)
has been proven to be polynomially equivalent to quantum computation in the standard gate model [3].
While the possibility of super-polynomial (or even just super-quadratic) quantum speed-up for NP-
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hard problems remains an open question6 it is generally believed that quantum computers (including
adiabatic quantum computers) are not able to efficiently solve NP-hard problems such as SAT. Note
that this assumption is implicit, e.g. in the fact that post-quantum cryptographers are working on the
assumption that symmetric algorithms like AES and SHA that offers n bits of security against classical
attacks offer n/2 bits of security against the best known quantum attacks [13].7 In this section we
consider the speedup that can be achieved by reducing the problem of factoring a semi-prime to an
instance of an NP-hard problem which is then solved with a quantum computer.

When considering the runtime T of an algorithm we are most interested in the runtime as a
function of the input size. In order to determine if one solver is faster than the other, we should
always consider the total runtime. In the above analysis this is what we did by measuring the total
runtime of the SAT solver including the runtime of the preprocessor.8 For many solvers the total
runtime can be naturally partitioned into the time spent in pre-/post-processing (Tp) and the time
spent solving (Ts):

T (n) = Tp(n) + Ts(n), (1)

where n is the input size of the problem.
Examples of this partitioning occur with the SAT preprocessor (Tp) and the SAT solver (Ts), the

compiling (Tp) and running (Ts) of Shor’s algorithm or the creation of a Hamiltonian (Tp) and the
execution of the adiabatic algorithm (Ts).

In order to properly analyze the runtime of any algorithm we need to consider T (n) and not just
Ts(n), since an unbounded amount of preprocessing can find a solution and render Ts(n) to be trivial.
We should also take care to set n to be the input size of the problem. Concretely this means we should
let n be the size of the semi-prime and not the number of variables or clauses in our SAT instance. It
is also important to analyse instance sizes larger than some lower bound (n ≥ n0), as the asymptotic
behaviour is not visible for smaller sizes. For example the asymptotics of the MapleCOMSPS solver
on integer factorization only become apparent at n0 = 20 bit semi-primes.

4.1 Faster SAT solvers
One might hope that we can apply a quantum strategy that can improve on the best known classical
methods. We chose SAT solvers to represent the best classical methods as their implementations are
the highly optimized result of years of research. Generic quantum searching methods can achieve at
most a quadratic speed-up, and we are aware of no convincing evidence that more than a quadratic
speed-up can be achieved by quantum SAT-solving methods. For example, many modern SAT solvers
rely on machine-learning techniques [38] and many quantum methods with a quadratic speedup are
known for a variety of machine-learning algorithms [10]. See also [1] for why the exponential speedup
promised in some quantum machine-learning literature is unlikely to be achieved in real-world imple-
mentations.

A quick calculation shows that even with a quadratic speedup, this strategy is not a very efficient
one. We set an upper bound on the number of operations required for the classical solver based on our
results. Accounting for any internal parallelism in the processor (four arithmetic ports per processor)
and assuming that the CPU was fully occupied at every clock cycle this means that 1010 operations
were being executed every second during the solving time.

Under this assumption the expected number of operations required for classical SAT solving be-
comes 216.8 · 20.495n. With a quantum computer we might hope to reduce this to

√
216.8 · 20.495n =

28.41 · 20.247n operations. To put this in perspective, consider a quantum computer that can execute
1040 quantum operations per second. Note that even a classical computer with such speeds could

6it is known that any such speed-up must go beyond pure “black-box” search [7] as attempted by Farhi et al. [25]
and must somehow exploit additional knowledge or structure [58]

7 Excluding some specific attacks in the “quantum superposition” attack model [30].
8To be even more precise we should also have included the time it took to generate the SAT instances. This generation

is done in polynomial time and the runtime is negligible compared to the solver time, therefore we omitted this from
our benchmarks.
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Figure 7: Comparison of efficiency of various factoring methods. The classical results are extrapo-
lated from experimental data. The quantum results apply a quadratic speedup over the full classical
computation. The number field sieve result plots LN [1/3, (64/9)1/3] operations assuming the same
number of operations per second.

break AES-128, SHA-256, RSA-2048 and ECC P-256 in an instant, so this is a very generous upper
bound. Under these assumptions it would still take approximately a hundred times the lifetime of the
universe to factor the RSA-768 number using the quantum SAT solving approach, whereas this number
has been factored classically on a real machine in two-thousand core-years using number-theoretical
methods. A visual comparison of these results are given in Figure 7.

Note that all estimates so far are biased towards more (classical) operations per second. The
reason is that we want to compute an upper bound on the speedup that can be achieved by applying
Grover’s algorithm (or some alternative quadratic speedup) in order to factor numbers with SAT
solving. It is almost certain that the processor executed less operations and it is very unlikely that
the quadratic speedup can be applied to the full computation without any overhead of executing
the algorithm. Therefore, classical algorithms will likely require less operations than reported and
quantum algorithms will likely require more operations than computed.

Note also that the known speedups for quantum solvers are applied to Ts, even though the above
calculation generously assumes that Tp(n) = 0 and the speedup can be applied to the full calculation
time T (n). For most classical solvers it indeed holds that Tp(n)� Ts(n) as n grows large enough, but
for many of the adiabatic factoring methods discussed below it holds that Tp(n)� Ts(n) as n grows.
This means that our calculation is a significant overestimation of the maximum speedup that can be
achieved with the adiabatic factoring method.

4.2 Adiabatic factoring
The method used for factoring with the adiabatic algorithm first reduces factorization to finding the
roots in a set of integer equations in which the unknown variables are restricted to binary values,
corresponding to the input bits of the prime and carry bits of the intermediate computation. This is
translated to the pseudo-Boolean optimization problem by squaring all equations (so that the roots
correspond to the minimum values) and summing over all equations. This reduction was first suggested
by Burges as a method for generating unconstrained optimization problems whose complexity can be
easily controlled [12]. The adiabatic algorithm [26] is particularly well suited for encoding optimization
problems of this kind: the resulting sum describes a Hamiltonian of which the ground state encodes
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the solution and every variable corresponds to a single qubit. In general it is not easy to physically
initialize the system in the ground state of the Hamiltonian, so instead an easier Hamiltonian encodes
the initial state which is easy to initialize in the ground state. The adiabatic theorem tells us that if
we evolve the physical system from the initial Hamiltonian to the final Hamiltonian slow enough, the
system will remain in its ground state. Measuring the final state will then provide the answer to the
optimization problem.

To assess the power of the adiabatic algorithm it is therefore important to quantify how fast this
evolution can be done. A coarse lower bound is given by the spectral width of the time-dependent
Hamiltonian, but sharper bounds on the runtime so far elude us [58]. This has led some researchers to
study the applicability of the adiabatic algorithm to some NP-complete problems [25]. Most evidence
for a speed-up is based on noise-free simulations on small instances (for which the asymptotic behaviour
might not be visible) which are chosen randomly, shedding light on typical performance for small
instances. Cryptographic problems require average-case hardness in order to be practical, which is
why they are so suitable for testing worst-case behaviour of algorithms that solve them, especially
when the reduction to an NP-hard problem is as simple as reducing factoring to SAT as demonstrated
in the previous section.

Pseudo-Boolean optimization is known to be NP-hard, meaning amongst other things that a poly-
nomial reduction exists from the SAT problem. The objective function for factorization instances
using the above method is a quartic polynomial. Real-world demonstrations of the adiabatic algo-
rithm suffer from additional limitations (besides noise-resistance) in the number of available qubits
and multi-qubit interactions. The latter limitation means that quartic terms in the objective func-
tion cannot always be realized. Using quadratization [50] each objective function can be simplified
to a quadratic polynomial at the price of additional variables, giving an instance of the well-studied
quadratic unconstrained binary optimization (QUBO)9 problem. This simplification runs in polyno-
mial time and results in only polynomially many variables overhead, so the problems are equivalent.

However for many real-world systems the extra variables (qubits) are not available, so additional
simplifications are required. This is fine as long as these simplification steps do not dominate the
overall runtime of the program. More precisely we can execute polynomially many simplification
operations and Tp(n) will remain polynomial in n, thereby not significantly increasing the runtime
T (n) which is dominated by the super-polynomial runtime Ts(n). When the simplification process is
allowed to have an exponential runtime it can absorb the hardness of the problem, leaving a weaker
problem to be solved (trivially) in polynomial time.

4.2.1 Implementations

The first adiabatic factorization [47] was implemented in 2008 using nuclear magnetic resonance
(NMR) to factor 21 using three qubits. The authors fit a quadratic curve against a theoretical
approximation in a noiseless model, they measure the runtime as a function of the number of input
qubits (not the size of the factored number) and they only consider the small domain of seven to
sixteen input qubits. It is doubtful that such small instances are a good indicator of polynomial
asymptotic behaviour.

Later work [63] translates the problem of factoring 143 into a pseudo-binary optimization instance,
which is an NP-hard problem [11]. The authors manage this by introducing the additional assumption
that both factors must be of equal bitlength with the most significant bit set to one. Combining these
assumption with some simplifications in the pseudo-Boolean equations simplifies the problem so that
it only concerns four input bits of the prime factors. Although the used simplifications are efficient,
only an upper bound of their effectiveness is given.

Subsequent research [17] observes that a minor generalization of the previous method reduces the
problem to four input qubits whenever the two primes composing the semi-prime differ only in two
positions, which likely occurs for infinitely many semi-primes [48]. This provides some evidence that

9also known as unconstrained binary quadratic programming (UBQP)
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the simplifications do not generalize and the factored number 143 was identified as a particularly easy
number to factor. In other words, this example was hand-picked from an exponentially unlikely family
of semi-primes that are by design easy to factor. The authors report the number 56153 as being the
largest semi-prime factored quantumly and at the same time argue that the work has factored an
arbitrarily large set of semi-primes (since they can be pre-processed into solving the same pseudo-
Boolean equations). The reason for not reporting a bigger number appears to be the large runtime
Tp of the simplification process.

Much subsequent research in the adiabatic factoring field has focussed on methods such as deduc-
reduc [57], split-reduc [46] and energy landscape manipulation [56], all of which can be seen as im-
provements on the preprocessor runtime Tp and none of which do any improvements on Ts.

The problems with viewing these works as relevant quantum integer factorization benchmarks is
highlighted even further in the more recent paper that claims to have factored 291311 with adiabatic
quantum computation [37]. The authors take the above approach and reduce the problem of factoring
291311 to the integer equations

q1 + q2 − 2q1q2 = 1 (2)
q2 + q5 − 2q2q5 = 0 (3)
q1 + q5 − 2q1q5 = 1, (4)

where the variables qi must take on binary values and represent unknown bits in the binary repre-
sentation of factor q = 1000q501q2q11. The authors stop their simplification process at this point and
fail to notice that the above equations can be further simplified to

q1 = 1− q2 = 1− q5. (5)

Both solutions q1 = 0 and q1 = 1 correspond with respective factors q = 557 and q = 523. In other
words, the number was already factored by the simplification process and the adiabatic quantum
computation was a complicated way of flipping a coin and deciding between the two factors. The
above criticism of these claims to meaningful quantum factoring benchmarks was in fact already
made in 2013 [53].

A method called Variational Quantum Factoring (VQF) [5] employs the same strategy for factoring,
which is to reduce it to an NP-hard optimization problem. The authors are careful to ensure that
preprocessing takes only polynomial time. Although the authors claim that “VQF could be competitive
with Shor’s algorithm even in the regime of fault-tolerant quantum computation”, we find no convincing
argument to support this conjecture. In particular, they do not provide convincing evidence that the
solving step is efficient: no semi-prime larger than 215 is considered by their work and they observe
that “the mere presence of carry bits negatively affects the algorithm”.

The criticism from [53] applies equally well against “compiled versions” of Shor’s algorithm: both
implementations require much precomputation and therefore do not scale to factoring larger numbers.
The problem is that both precomputations require prior knowledge of the solution. “Compiled ver-
sions” of Shor’s algorithm were never intended to scale to meaningful input sizes, as is highlighted in
the abstract of the work factoring 15 with NMR: “scalability is not implied by the present work. The
significance of our work lies in the demonstration of experimental and theoretical techniques” [59].

The important difference is that the runtime of Shor’s algorithm is well understood and provides a
super-polynomial speedup in Ts over even the best numerical methods for factoring. As fault-tolerant
hardware emerges, we can simply strip away the non-scalable optimizations. On the other hand the
runtime of reducing factoring to an NP-hard problem and then solving it with (quantum) solvers is
not understood very well, but all evidence points in the direction that it cannot even compete with
classical numerical methods for factoring.
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4.3 D-Wave
The D-Wave systems work by a process called quantum annealing, which can be viewed as a noisy
version of adiabatic quantum computing. It has been shown that O(n2) qubits suffice to encode
factoring into a quantum annealing instance with local interactions [39]. The article “Boosting integer
factoring performance via quantum annealing offsets” [4] describes a “boost” when comparing factoring
on the D-Wave machine with annealing offsets against the D-Wave machine without annealing offsets.
The largest factored number has 20 bits.

All semi-primes up to 200000 (18 bits) have been factored with help of the D-Wave 2X by heuris-
tically mapping the optimization problem to the Chimera graph underlying the machine [22]. Ex-
ponential methods from computational algebraic geometry are used for preprocessing the instances
without quantification of the (asymptotic or measured) runtime so that there is no indication of the
efficiency of this preprocessing step. Although some statistics on the annealing process are provided
for six semi-primes, not enough information is given for a meaningful assessment on the scalability of
both the efficiency and effectiveness of this method.

Integer factorization has been implemented on the D-Wave 2000Q by a similar strategy [28].
Quantified experimental results are only provided for factoring 15 and 21. As the authors note, there
is no evidence that quantum annealing will find factors with significant likelihood in polynomial (or
even sub-exponential) time.

5 Conclusions
SAT solvers are not known or believed to be able to factor semi-primes efficiently. Overall, even
the fastest solver (MapleCOMSPS) has an exponential runtime in the size of the factors. Closer
inspection of the solver runtime indicates that the solver is not able to detect any pattern in the
SAT formulas that encode the factorization problem. Asymptotically the solver runtime appears
to be comparable to that of trial division, but this advantage is almost completely negated by the
overhead in the constant term. The performance of SAT solvers does not even come close to that of
number-theoretical methods.

Quantum SAT solvers are not expected to do much better. Even when calculating a very opti-
mistic speedup to the current state-of-the-art classical solvers, these solvers are outperformed with
orders of magnitude by (classical) number-theoretical factoring methods. This approach to factor-
ing reduces factoring, a problem with an LN [1/3, (64/9)1/3] algorithm, to an NP-hard problem and
then running (classical or quantum) solvers that have exponential runtime in the worst-case. At the
surface, this obviously does not sound like a promising idea, as the quantum SAT solver must make
up the exponential ground lost by translating the problem with subexponential algorithms to one
where the best known algorithms are exponential. One might hope that good SAT solving heuristics
for solving SAT on random or average-case instances could nevertheless have a practical impact on
integer factorization, but there is no evidence of this. Of course if it were that easy RSA would be
broken regularly by SAT solvers which does not appear to be the case. Furthermore, in practice it
appears that SAT instances derived from integer factorization instances are hard SAT instances. Thus
it would be especially surprising if a SAT solver of any kind (quantum or classical) could solve these
instances with resources comparable to that of using the classical number field sieve (i.e. subexpo-
nential complexity). Our work explores this possibility more deeply and reinforces the folklore that
reducing multiplication to SAT and then applying SAT solvers, classical or quantum, is not useful for
factoring numbers of sizes relevant to cryptography.

A more promising approach is to try to speed up the solution to some subroutine of the NFS,
as is done in [8]. In particular, one could reduce some carefully chosen sub-problem solved within
the number field sieve to SAT. The sub-problem should be chosen so that classically solving the
SAT instance is roughly as costly as the usual approach to solving the sub-problem. In this case,
any quantum speed-up for solving these SAT instances would lead to a faster implementation of the
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number field sieve. This approach is explored in [44].
Of course, one cannot rule out unexpected breakthroughs in quantum SAT solving or a wide

range of other quantum or classical approaches to factoring semi-primes. However, it is important to
distinguish the possibility of unexpected breakthroughs (especially those that contradict conventional
wisdom or lack a plausible roadmap) from tracking progress of an existing hardware platform and of
an algorithm that is pertinent for cryptographically relevant semi-primes (i.e. classical computers and
the NFS).

Once scalable fault-tolerant quantum computers capable of implementing Shor’s algorithm are
available, a similar tracking would be very meaningful (with the caveat outlined in the introduction).
In the meantime, it is important to track progress toward achieving scalable fault-tolerant quantum
computers.

In other words, notwithstanding other scientific merits of these works, we are not aware of any
evidence that any SAT-based quantum factoring results to date, including factorization by quantum
annealing, are relevant milestones toward large-scale integer factorization or the demonstration of a
speed-up over the best known classical algorithms for integer factorization.
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(b) Karatsuba multiplication

Figure 8: Runtime of CryptoMiniSat 5 on factoring semi-primes. We measured 100 semi-primes per
bitlength and applied no randomization.

Figure 8a and Figure 8b show the performance of factoring semi-primes with CryptoMiniSat 5.
This solver solved each semi-prime SAT instance once, so no averaging has been applied to the
shown results. In particular, one might be tempted to conclude from the longer whiskers in the
depicted results that the CryptoMiniSat solver is lucky more often. However, the MapleCOMSPS
solver gives similar results when only considering one solution. Closer inspection of the data reveals
that CryptoMiniSat 5 is is outperformed consistently by MapleCOMSPS.

B Patterns
Figure 9 and Figure 10 examine the relation between various metrics on p, q and the solver time for
long multiplication encoding and Karatsuba encoding (respectively). See also [60] for enlarged images.
We examined bitwise patterns as these are most likely exploited by the SAT solver and we examined
smoothness as this can determine the hardness of factoring for some number-theoretical methods.

Note that only the first two metrics (log2 N and Hamming weight(N)) could potentially be used
to predict how fast the solver will find a solution. The remaining metrics require knowledge of the
value of p and q, but these metrics could be important for anyone generating primes in the RSA
cryptosystem.

However, the lack of any correlation indicates that none of the investigated patterns have a signif-
icant impact on the solver time. In other words, SAT solvers do not influence the method by which a
user of the RSA cryptosystem should generate primes.
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Figure 9: Solver time versus various patterns (schoolbook encoding).
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Figure 10: Solver time versus various patterns (Karatsuba encoding).
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