
Quantum information in
security protocols

by

Sebastian Reynaldo Verschoor

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science (Quantum Information)

Waterloo, Ontario, Canada, 2022

© Sebastian Reynaldo Verschoor 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Harry Buhrman
Professor, Faculty of Science, Institute for Logic, Language
and Computation
University of Amsterdam

Supervisor: Michele Mosca
Professor, Department of Combinatorics and Optimization,
University of Waterloo

Internal Member: Ian Goldberg
Professor, David R. Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Douglas Stebila
Associate Professor, Department of Combinatorics and
Optimization,
University of Waterloo

Other Member(s): John Watrous
Professor, David R. Cheriton School of Computer Science,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Information security deals with the protection of our digital infrastructure. Achieving
meaningful real-world security requires powerful cryptographic models that can give strong
security guarantees and it requires accuracy of the model. Substantial engineering effort
is required to ensure that a deployment meets the requirements imposed by the model.

Quantum information impacts the field of security in two major ways. First, it allows
more efficient cryptanalysis of currently widely deployed systems. New “post-quantum”
cryptographic algorithms are designed to be secure against quantum attacks, but do not
require quantum technology to be implemented. Since post-quantum algorithms have
different properties, substantial effort is required to integrate these in the existing in-
frastructure. Second, quantum cryptography leverages quantum-mechanical properties to
build new cryptographic systems with potential advantages, however these require a more
substantial overhaul of the infrastructure.

In this thesis I highlight the necessity of both the mathematical rigour and the engi-
neering efforts that go into security protocols in the context of quantum information. This
is done in three different contexts.

First, I analyze the impact of key exhaustion attacks against quantum key distribution,
showing that they can lead to substantial loss of security. I also provide two mitigations
that thwart such key exhaustion attacks by computationally bounded adversaries, without
compromising the information theoretically secure properties of the protocol output. I give
various security considerations for secure implementation of the mitigations.

Second, I consider how quantum adversaries can successfully attack quantum distance
bounding protocols that had previously been claimed to be secure by informal reasoning.
This highlights the need for mathematical rigour in the analysis of quantum adversaries.

Third, I propose a post-quantum replacement for the socialist millionaire protocol in
secure messaging. The protocol prevents some of the usability problems that have been
observed in other key authentication ceremonies. The post-quantum replacement utilizes
techniques from private set intersection to build a protocol from primitives that have seen
much scrutiny from the cryptographic community.

iv

Acknowledgements

Thanks to Michele Mosca, for his continued support throughout this program, especially
near the end as the mental burden during the lockdowns almost made my progress come
to a standstill. Thanks to my committee, Harry Buhrman, Ian Goldberg, Douglas Stebila,
and John Watrous, for taking the time to read and discuss my work. Their feedback has
allowed many improvements to the quality of this thesis.

Thanks to all those that have helped me improve upon these chapters through helpful
discussions and feedback. Thanks to all my colleagues at evolutionQ for their help with
Chapter 2, in particular I want to thank James Godfrey, Thomas Parry, and Geovandro
Pereira. I want to thank Ian Goldberg, Daan Leermakers, Boris Škorić, and John Watrous
for helpful feedback on Chapter 3. I want to thank Douglas Stebila for helpful discus-
sions, and Daniel Masny for helping me understand the nuances of the security model in
Chapter 4.

Thanks to the staff from the University of Waterloo for their help and support through-
out my graduate studies. Special thanks to Chin Heng Lee, Shannon Chung, the CS
graduate office and the UW counselling services.

Thanks to all the friends that have made me feel at home at both the IQC and in
Kitchener. Special thanks to Dan Allard, Júlia Amorós Binefa, Matthew Amy, Stefanie
Beale, Nina Bindel, Olivia Di Matteo, Vlad Gheorghiu, Geovandro Pereira, Ramy Tannous,
Sara Zafar Jafarzadeh.

Thanks to my family for their support. Thanks to my mother, José, for her support
and for being a role-model of strength, no matter what life throws at you. Thanks to my
father, Ton, for always listening with pride, even if he did not understand everything I
told.

Thanks to Silke, for marrying me and joining me on this five year adventure across
the ocean. Her friendship, patience, and love have given me the strength to complete this
thesis.

v

Table of Contents

List of Figures x

List of Tables xii

List of Abbreviations xiii

1 Introduction 1

1 Quantum information . 2

2 Security protocols . 3

2.1 Ceremonies . 4

2.2 Protocol aborts . 4

3 Contributions . 6

3.1 Terminology . 7

4 Conventions . 7

2 Preventing key exhaustion in quantum key distribution 9

1 Introduction . 9

1.1 Outline . 10

2 Background . 10

2.1 Quantum key distribution . 11

2.2 Message authentication codes . 14

vi

2.3 Hash-based signatures . 18

2.4 BB84-AES . 20

3 Key exhaustion . 20

3.1 Aborts . 23

3.2 Consequences beyond availability 24

3.3 Key exhaustion against computational cryptosystems 25

3.4 Key exhaustion without computational cryptosystems 26

4 A decoy-based mitigation . 26

4.1 Construction . 26

4.2 Analysis . 32

4.3 Improvement . 41

5 A ratchet-based mitigation . 42

5.1 Construction . 42

5.2 A balanced variant . 45

6 Mitigation comparison . 47

6.1 Combining the mitigations . 48

7 Security considerations . 49

7.1 Computationally authenticated channel 49

7.2 Local state management . 50

7.3 Parallelism . 52

7.4 Side-channel analysis . 53

8 Discussion . 54

3 Terrorist fraud in quantum distance bounding 56

1 Introduction . 56

1.1 Outline . 58

2 Background . 58

2.1 Classical distance bounding . 58

vii

2.2 Quantum information . 69

3 Quantum distance bounding . 75

3.1 Unproven (in)security . 77

4 AMSP protocol . 77

4.1 Key-extraction under XOR encryption 79

4.2 Terrorist fraud . 84

4.3 Improved analysis . 86

5 Abidin’s protocol . 88

5.1 Key-extraction under XOR encryption 88

5.2 Terrorist fraud . 91

5.3 Improved analysis . 91

6 Improved RAD protocol . 92

6.1 Key-extraction under XOR encryption 94

6.2 Terrorist fraud . 95

6.3 Improved analysis . 95

7 Fixing the IRAD protocol . 97

7.1 Analysis . 97

7.2 Comparison to Swiss-Knife . 99

8 Discussion . 99

4 Key authentication from post-quantum key encapsulation mechanisms
and signatures 102

1 Introduction . 102

1.1 Contributions . 104

1.2 Notation . 105

2 Background . 105

2.1 Off-the-Record Messaging . 105

2.2 Authentication ceremonies . 106

viii

2.3 Socialist millionaire protocol . 108

2.4 Private equality test . 109

2.5 Universal composability . 109

2.6 Random oracle model . 118

2.7 Oblivious transfer . 119

2.8 Split functionalities . 120

2.9 Password authenticated key exchange 124

3 Protocol . 124

3.1 Oblivious transfer . 125

3.2 Private equality confirmation . 131

3.3 Split private equality confirmation 140

4 Implementation . 142

4.1 Side-channel protection . 144

4.2 Measurements . 145

5 Discussion . 147

5 Conclusion 149

References 151

Appendix 174

ix

List of Figures

2.1 Quantum key distribution (QKD) . 11

2.2 Hash-based signatures: Merkle tree . 19

2.3 Decoy-based QKD key exhaustion mitigation (flowchart) 27

2.4 Decoy-based QKD key exhaustion mitigation (sequence diagram) 28

2.5 Decoy-based QKD key exhaustion mitigation (sequence diagram, ℓ ≤ 1) . . 41

2.6 Ratchet-based QKD key exhaustion mitigation (sequence diagram) 43

2.7 Ratchet-based QKD key exhaustion mitigation (balanced, sequence diagram) 46

2.8 Combined QKD key exhaustion mitigation (sequence diagram) 48

2.9 Desynchronization of ratchet-based mitigation under parallel composition . 52

3.1 MAP1.1 protocol . 60

3.2 Impersonation fraud . 60

3.3 Distance fraud . 61

3.4 Mafia fraud . 61

3.5 Terrorist fraud . 62

3.6 Distance hijacking . 63

3.7 Swiss-Knife distance bounding protocol (simplified) 64

3.8 AMSP quantum distance bounding protocol 78

3.9 Expected cost of key-extraction of AMSP protocol 83

3.10 Terrorist fraud against AMSP protocol . 85

3.11 Abidin’s quantum distance bounding protocol 89

x

3.12 Non-orthogonal bases . 89

3.13 The IRAD quantum distance bounding protocol 93

3.14 The IRAD protocol with a countermeasure against key extraction. 98

4.1 Socialist millionaire protocol (simplified) 108

4.2 Ideal functionality: multi-message authentication 116

4.3 Simple universal composability: hybrid model 116

4.4 Simple universal composability: ideal model 117

4.5 Ideal functionality: the local random oracle model 119

4.6 Ideal functionality: split functionality . 121

4.7 Protocol realizing any split functionality 122

4.8 Protocol realizing split authentication . 123

4.9 Ideal functionality: oblivious transfer . 126

4.10 One-round trip time key exchange . 126

4.11 Oblivious transfer construction by Masny and Rindal 127

4.12 Optimization of Diffie-Hellman based oblivious transfer construction 130

4.13 Ideal functionality: private equality confirmation 132

4.14 Protocol for realizing private equality confirmation 134

xi

List of Tables

3.1 Success probability of best-known attacks on distance bounding protocols . 100

4.1 Performance of 1-out-of-m oblivious transfer 146

4.2 Performance of ΠF ′
PEC

. 146

xii

List of Abbreviations

AES Advanced Encryption Standard 20, 57, 86, 95

AKE authenticated key exchange 102, 103, 105, 115, 124, 140, 141, 148

CA certificate authority 103

CFRG Crypto Forum Research Group 19

CIA confidentiality, integrity and availability 9

DAKE deniable authenticated key exchange 105, 108

DDH decisional DH 130

DF distance fraud 65, 67, 76, 77, 86, 91, 92, 95–97, 99, 100

DH Diffie-Hellman xi, xiii, 7, 104, 106, 125, 129–131, 143, 144

DoS Denial-of-Service 4, 9, 11, 20, 23–25, 54

ECDH elliptic curve DH 104, 105, 131, 143, 148

EUF-CMA existential unforgeability under chosen message attack xv, 15, 50, 140

GNSS Global Navigation Satellite System 67

HBS hash-based signatures 11, 18, 19, 25, 51

HTTP Hypertext Transfer Protocol xiii

HTTPS HTTP/TLS 103

xiii

IRAD improved RAD 57, 58, 75, 76, 93, 97–100

ISO International Organisation for Standardization 1

ITI ITM instance 111–115

ITM interactive Turing machine xiv, 111, 112

ITS information theoretically secure iv, 3, 6, 9, 10, 12, 14, 16–18, 20–33, 38–45, 47, 48,
50–54, 149

KDF key derivation function 105, 131, 144

KEM key encapsulation mechanism 7, 104, 105, 120, 124, 125, 128, 129, 131, 142–144,
147, 150

KEX key exchange xi, 3, 4, 9, 11, 13, 50, 104, 106, 125–128, 131, 141, 145, 147, 148

MAC message authentication code 14–18, 24, 25, 45, 50, 59, 64, 65, 84, 87, 97

MF mafia fraud 62, 65–67, 69, 76, 77, 87, 91, 92, 96, 97, 99, 100

MPC secure multi-party computation 119, 120

NFC near-field communication 67

NIST National Institute for Standards and Technology 51, 104, 124, 145

OSI Open Systems Interconnection 4

OT oblivious transfer xi, xii, 7, 104, 105, 109, 119, 120, 124–137, 142–148, 150

OTR Off-the-Record Messaging xiv, 42, 102–107, 109, 115, 131, 140, 141, 145, 147, 174

OTRv4 OTR version 4 105, 131, 141, 143

PAKE password authenticated key exchange 105, 124, 140, 148

PEC private equality confirmation xi, 132, 140, 143, 147, 150

PET private equality test 104, 105, 109, 124, 131, 140, 147, 148

PGP Pretty Good Privacy 103, 105

xiv

PITM person-in-the-middle 13, 22, 24, 33, 94, 103, 131

PKE public key encryption 128, 129

PKI public key infrastructure 45, 103, 106, 120, 141

PPT probabilistic polynomial time 33, 34, 112, 113, 132, 133, 139

PRF pseudo-random function 63, 64, 76, 79, 86, 91, 95, 96, 124

PSI private set intersection iv, 7, 132

QKD quantum key distribution iv, 3, 6, 9–14, 17–21, 23–31, 33–35, 38–47, 50–52, 54, 55,
76, 149

QROM quantum ROM 119, 130, 131

RAD relay attack detection xiv, 57

RFID radio-frequency identification 56, 59, 63, 68, 100

ROM random oracle model xi, xv, 118, 119

RTT round trip time xi, 125, 126, 142, 148

SDP semidefinite program 74, 75

sEUF-CMA strong EUF-CMA 16, 50

SFE secure function evaluation 109, 119, 125, 131

SMP socialist millionaire protocol iv, xi, 7, 103, 104, 106–109, 147, 150

SUC simple UC 115–118, 127, 128, 131, 133, 134, 139, 147

TCP Transmission Control Protocol 4

TF terrorist fraud 6, 57, 58, 62, 63, 65, 66, 69, 76, 77, 85, 86, 89, 91, 92, 95, 97, 99, 100,
150

TLS Transport Layer Security xiii, 103

TOFU trust on first use 103

xv

UC universal composability xi, xv, 7, 33, 104, 109–118, 120, 122–124, 128, 131, 139–141,
148

WOT web of trust 103, 106

XMSS extended Merkle signature scheme 19, 26

XOF extendable-output function 144, 145

xvi

Chapter 1

Introduction

Information security and cybersecurity are terms that appeal to the intuitive notions we
have about the protection of the digital infrastructure which forms a cornerstone of our
modern society. Although the above sentence captures the importance of the field, its
imprecision and broadness make the terms almost meaningless. Despite a general lack
of consensus about the precise meaning and role of security, many have attempted to pin
down this intuition. For example, the International Organisation for Standardization (ISO)
defines information security as the “preservation of confidentiality, integrity and availability
of information” [ISO18], also know as the CIA triad. Any definition that is based on natural
language will run into the problem that it appeals to the connotations held by the reader.
To avoid such ambiguity, we generally turn to mathematics.

Much has been said about the role that mathematics can have in the context of infor-
mation security (see the systematization of knowledge by Herley and van Oorschot [HO17]
for an overview). Cryptography operates on mathematical abstractions of the real world
to which we refer as the security model. Besides deductive reasoning within the model,
security research should apply inductive reasoning to assess the validity of that model.
Stated differently, an adversary might be able to compromise security by exploiting the
gap that exists between the theory of cryptography and the reality of implementations in
the form of assumptions in the model that are not met. Meaningful real-world security can
only be achieved if meaningful security results can be derived in the model and the model
is an accurate representation of reality.

Some examples make that concrete. There is the assumption of secure local environ-
ments : almost all cryptography operates under the assumption that devices of commu-
nicating parties are not completely compromised. Without this assumption it would be

1

difficult to give any guarantee of security, but in practice it is very hard to secure devices.
Another complicating factor is provided by side-channel attacks [Koc96]: measurements
of computations, such as the required amount of time or consumed power, can completely
leak what is being computed upon. Models for protecting against side-channels are be-
coming increasingly sophisticated, but currently the protection is mostly provided by both
software and hardware engineering efforts.

An example more relevant to the thesis is the following assumption about the physical
environment. When you have your wireless payment card in your wallet, you do not
want somebody else to be able to pay with that card at some other location. Standard
cryptography can not help us here, instead we require distance bounding protocols : these
ensure that the card will only work if it is in close proximity to the payment terminal.

Another gap between the theory and practice of security is that practical security has to
deal with humans. Human beings make mistakes, but these should not lead to devastating
loss of security. The easiest solution to this problem is to avoid human involvement in
security critical processes when possible. However for the system to be usable, the user
will have to be able to interact with it somehow.

Finally we consider the engineering challenge of securely implementing and deploying
information systems. Complexity is the enemy of security: every mistake that exists within
a security system has the potential to lead to real-world security loss and complex systems
have more room for mistakes. Also, hardware needs to be maintained, software must be
updated and everything must be integrated into a larger network. Designing protocols with
few resource requirements and little room for (catastrophic) failure help to keep systems
simple and thereby secure.

1 Quantum information

Quantum mechanical processes behave very differently from the classical phenomena that
humans experience on a macroscopic level, which makes reasoning about those processes
somewhat non-intuitive. Physical experiments confirm to a high degree of accuracy that
the physical laws of quantum mechanics can be derived from some simple mathematical
postulates. The implications of those laws turn out to be significant to cryptography.

Contemporary cryptography has seen significant impact from developments in quantum
computation. Shor’s algorithm [Sho94] threatens to break the security guarantees of widely
deployed public-key (asymmetric) cryptographic primitives. The algorithm can efficiently
factor large numbers and find discrete logarithms, which represents the bulk of widely

2

deployed cryptography. Grover’s algorithm [Gro96] threatens to weaken symmetric cryp-
tography, as it allows a quadratic speedup in search problems such as finding pre-images of
a cryptographic hash function. Although both algorithms require large-scale fault-tolerant
quantum computers that currently do not exist, their implications greatly accelerated the
development of post-quantum cryptography, both in academia [BBD09; ABB+15; BL17]
and in standardization efforts in the industry [NIST17; ETSI].

Post-quantum (also called quantum-resistant) cryptography has the goal of creating
classical primitives that are quantum-secure: they resist the increase in computational
power gained by quantum adversaries. Against Grover’s algorithm it is sufficient to double
the key sizes, but against Shor’s algorithm it is necessary to deploy new asymmetric prim-
itives that are based on other mathematical problems that are (conjectured to be) hard.
The currently known post-quantum primitives differ from the pre-quantum ones in several
different ways, ranging from slightly larger keys to the fact that certain useful operations
on them are not possible. Directly replacing pre-quantum with post-quantum primitives
is not always possible, posing challenges to designers of post-quantum protocols.

On the constructive side, a quantum channel can be used as a cryptographic primitive.
Data on this channel has some interesting properties, such as the inability to be perfectly
cloned [WZ82] or being measured undetected. This can be leveraged to build crypto-
graphic protocols. Most notably quantum key distribution (QKD) [BB84] uses a quantum
channel to expand a small shared key into an arbitrary sized key, as long as the effect of
tampering and eavesdropping is below a certain threshold. QKD can provide information
theoretically secure (ITS) guarantees about its output, meaning that it does not depend
on some computational complexity assumption. However it should be noted that quantum
cryptography is not exempt from the earlier mentioned relation between security models
and the real world.

2 Security protocols

This thesis will focus on the security provided by cryptographic protocols. Protocols com-
bine cryptographic primitives with interactivity to provide security guarantees. For ex-
ample, a typical key exchange (KEX) sets up a secure shared key between two users that
only know each other’s public key. This can be used to encrypt messages back and forth,
so that effectively a secure channel has been set up. Many tools and frameworks exist to
support the design and analysis of cryptographic protocols, making this the highest layer
that can still be analyzed with mathematical rigour.

3

2.1 Ceremonies

Ceremonies are an extension of network protocols [Ell07]. Whereas network protocols might
consider some communication to be out-of-band, nothing is out-of-band for a ceremony,
including interaction with humans. For example, a protocol can assume that a public key
for the KEX is simply provided to the device initially, but a ceremony must specify how it
gets there. Ceremony analysis can be a helpful tool in analyzing protocols: if a ceremony
cannot be made secure or if it heavily relies on humans successfully completing a difficult
task, the protocol may have to be changed accordingly.

2.2 Protocol aborts

I will consider protocol aborts in detail, as it will be relevant in multiple locations of the
thesis.

Security protocols must deal with aborts: a party can always deviate from a protocol by
halting. A complete formal specification of a security protocol must include a specification
of how to handle aborts [Gol04, Section 7.2.3], but specifying such details can rapidly
become tedious, so it is rarely made explicit in much of the literature. The method for
aborting can be significant for the security of the protocol in subtle ways, as highlighted by
this work, so in this thesis I argue that aborts and their handling should be made explicit.

An underlying assumption throughout this thesis is that classical (non-quantum) mes-
sages are delivered over a message transport layer. The purpose of such a layer is to
preprocess incoming signals into bytestrings that can be delivered to the security protocol.
This layer roughly corresponds to the Level 4 layer in the Open Systems Interconnection
(OSI) network stack (think of the Transmission Control Protocol (TCP) layer on the in-
ternet), but with some specific assumptions. The message transport is assumed to be
sufficiently robust against environmental noise, meaning that any non-malicious message
alterations are delivered with low probability. Such mechanisms include error correcting
codes, message acknowledgements, and even sending messages over redundant physical
and/or logical channels.

In order to achieve the above mentioned robustness, the transport layer locally has to
maintain some state, for example to reorder packets that arrive out of order. A program
that allocates many resources of its executing device will become vulnerable to Denial-
of-Service (DoS) attacks, where an adversary can initiate many connections in order to
exhaust the resources of the system. This problem is exacerbated by protocols that require
devices to maintain a large state on top of the state required for the transport layers and

4

underlying layers. Thus the message transport layer could ignore some invalid messages
and optionally send resend requests, but eventually it may conclude that no valid message
is incoming, at which point it delivers a special abort symbol (⊥). It is important to
recognize that no implementation of the message transport layer can guarantee delivery of
messages in the presence of a sufficiently powerful adversary and the impact of message
delivery failure must be assessed accordingly.

If the transport layer does deliver a message, I distinguish two reasons why the cryp-
tographic layer might abort. First, incoming messages could be invalid. Most models of
protocols operate on messages in a certain domain M, but implementations usually op-
erate on bytestrings. Let B = {0, . . . , 255} be the set of bytes. Then there should be an
effective subroutine P : B∗ →M∪ {⊥}, which I will call the message parser. The parser
P can return a special symbol ⊥ as a parser error, indicating that the bytestring does not
have a value inM. When a parser operates on public values (directly on the full message
received from the transport layer) a parser abort cannot leak any information, but there
are subtle issues surrounding parsing that can lead to security failures. For example, if a
secret local value determines which part of a message is parsed, parser aborts can leak that
secret. Since parsing details differ per protocol, we consider parsing as part of the protocol
and not as part of the message transport layer.

A second reason for aborting is that a local subroutine can fail. For example, the de-
coder in code-based cryptography can fail to decode some ciphertext. Since the subroutine
outcome can depend on secret data, protocols should always ensure that none of that secret
data is leaked through the act of aborting.

Note we have not yet specified how a protocol deals with aborts. There are two com-
monly used methods. The first is to replace abort symbols with a default value. This can
simplify the protocol description and analysis, and it may simplify the application layer
built on top of the security protocol. The second method is to abort the protocol itself,
which includes extending protocol output domains with a dedicated abort output, and
optionally extending all protocol message domains with a dedicated abort message.

When the cryptographic layer aborts, the application layer will have to deal with it,
which may result in exposing the user to an error message. Since these aborts often indicate
some sort of security failure, proper handling is required. Designing adequate ceremonies
for this purpose is not an easy task, so where possible, exposing users to such security
details is not advisable.

I will abuse notation and overload the ⊥ symbol in the context of aborts. It represents
protocol outputs after abort, abort protocol messages, and failed subroutine outputs, where
the exact meaning should be clear from the context.

5

A final consideration regarding aborts is that real-world systems are not infallible. For
example, loss of power or crashes can force system reboots with the consequence that
any state stored in non-persistent memory is lost. Any protocol that was running at
the time will implicitly have been aborted, but such aborts should not lead to significant
loss of security. Any state that is essential for security should therefore be kept in non-
volatile storage. Security-critical updates to this storage should be atomic, minimizing the
probability that system failures result in partial updates that leave an invalid state. This
probability may be large in the context of active side channel attacks: an adversary with
some influence over system crashes might be able to lower security.

3 Contributions

Thesis statement

Information security in the context of quantum information has a strong
dependency on mathematical definitions of security, yet sound engineering
practices remain unavoidable in order to construct meaningfully secure cryp-
tographic protocols.

This thesis has three main contributions to support the above thesis statement. Each
contribution is presented in its own chapter.

Chapter 2 discusses key exhaustion in QKD, a problem that is known to exist, but
that I believe has not been given sufficient attention. In the chapter, I investigate whether
a protocol that is vulnerable to key exhaustion can provide meaningful security in real-
world scenarios. I also present two countermeasures that combine computational and
ITS cryptography: the result is a protocol with computational protection against key
exhaustion, without any compromise to the ITS guarantees that QKD can provide.

Chapter 3 contains a cryptanalysis of (all three existing) quantum distance bounding
protocols [AMSP17; Abi19; Abi20]. The protocols’ structure is similar to that of classical
distance bounding protocols, but the rapid phase exchanges qubits instead of classical bits.
In this chapter, I show that the proposed countermeasure against terrorist fraud (TF) (a
type of collaborative attack) is ineffective at best and can even leak the long-term key.
Since such a countermeasure is not always required, I also analyze the protocol without it,
finding that previous analyses were either flawed or overestimated the achievable security.

6

Chapter 4 provides a post-quantum replacement for the socialist millionaire protocol
(SMP) [BST01], which is used for key authentication in secure messaging. The SMP
depends on properties of the Diffie-Hellman (DH) primitive and cannot be directly re-
placed by current post-quantum primitives. I propose a protocol that is an adaptation
of an existing private set intersection (PSI) solution [RR17]. It is built on top of oblivi-
ous transfer (OT), which can be built from post-quantum key encapsulation mechanisms
(KEMs) [MR21]. Besides a reductionist security argument in the universal composability
(UC) framework [Can01], I also discuss the design decisions I made to ensure the protocol
could provide meaningful security.

3.1 Terminology

Throughout the thesis I comment on the confusing (and sometimes incorrect) terminology
that I have found in the literature. This might be a little pedantic, but I believe that clear
and non-ambiguous communication is essential in order to ensure that academic results
can have a positive impact in the real world. The tools we propose should come with
clear statements of both their capabilities and limitations, helping engineers to construct
the right context for deploying them. I am concerned that presenting exaggerated results,
whether unknowingly or purposefully, can damage the credibility of the field. Specifically
in cryptography, where seemingly minute details can have a large impact, such confusion
could lead to loss of meaningful security. Some might say that it already has [KM07].

4 Conventions

To enhance the clarity of protocol descriptions, I refer to the communicating parties as
Alice (she/her) and Bob (he/him), whereas Mallory (she/her) is an (active) adversarial
outsider party. This is an anthropomorphic description: the parties are (idealized) devices
that act precisely according to the protocol specification. Where necessary, I distinguish
users from their devices.

I will adhere to standard terminology and notation as much as possible. The notation
x

$← X represents sampling x according to X, where X is a probability distribution, a
randomized subroutine, or a set (in which case x is sampled uniformly). The notation
x := X means that the value X is assigned to the variable x, distinguishing it from a test
for equality where necessary.

An important concept in security is that of negligible functions, defined as follows.

7

Definition 1.1 (Negligible). A function µ : N → R+ is negligible in λ if for every poly-
nomial p there exists a λ0 such that for all λ > λ0:

µ(λ) <
1

p(λ)
. (1.1)

The set of all functions that are negligible in λ is denoted negl(λ).

We follow a few conventions with respect to this definition. First, when a function is
claimed to be negligible, it should be understood as being negligible in λ (the security
parameter). Second, the phrase “for sufficiently large λ” should be interpreted as “there
exists a λ0 such that for all λ > λ0”. Third, when we state that some event X occurs
with overwhelming probability, that means the probability that the event does not occur is
negligible: (1− Pr[X]) ∈ negl(λ).

A function that does not satisfy Definition 1.1 is called non-negligible: f(λ) is non-
negligible if there exists a polynomial p such that for all λ0 there exists a λ > λ0 such that
f(λ) ≥ 1/p(λ). By convention the phrase “for infinitely many λ” replaces “for all λ0 there
exists a λ > λ0”.

8

Chapter 2

Preventing key exhaustion in quantum
key distribution

1 Introduction

Many attempts at defining information security list the CIA triad among the core concepts:
confidentiality, integrity and availability. Whereas cryptography provides primitives and
protocols for protecting confidentiality and integrity, it usually has an adverse effect on
availability: cryptography requires time and other resources of the executing device, am-
plifying the effect of Denial-of-Service (DoS) attacks. In order to minimize the impact of
cryptography on availability, primitives should be fast and have low resource requirements,
while protocols should detect illegitimate behaviour early and abort in order to allow rapid
continuation of legitimate communication.

Quantum key distribution (QKD) protocols establish fresh shared key material. When
participants start with a small shared secret, for example a secret that was established
through some uncompromised key exchange (KEX), then the confidentiality and integrity
of the QKD output does not rely on any complexity assumptions, so it is information
theoretically secure (ITS). This means that QKD can provide everlasting security [Unr13]:
keys remain secret, even against adversaries that become computationally unbounded in
the future. Despite this theoretical advantage, the NSA recently recommended against
using QKD in general [NSA20], listing the increased risk of DoS as one of five technical
limitations.

Any cryptographic system is vulnerable to DoS attacks, but a problem that is specific
to QKD is that of key exhaustion. QKD requires communication over a public quantum

9

channel and an authenticated classical (non-quantum) channel. In practice the latter is
built by adding cryptographic authentication to messages on a public classical channel. The
integrity of the QKD output depends on that of the classical channel: ITS QKD requires
ITS authentication. There exists classical cryptography that achieves this [WC81], but it
comes at a price compared to computationally secure authentication: key material (or some
of it) has to be discarded after it has been used. Since QKD outputs more bits than are used
for authentication, the consumed key bits can be replenished from this output. However
if an adversary can consistently force the QKD protocol to abort, after key material has
been consumed but before providing new output, they can exhaust all key material.

This chapter presents two main contributions. First we consider key exhaustion on
QKD protocols in greater detail than has been done before. The attack applies to all
current QKD protocols and allows an adversary to completely exhaust the shared key
material. Attacks on availability are often dismissed in the QKD literature, often with
the argument that no cryptography can protect you from an adversary that simply cuts
the wire. We show that the impact of the described attack is much more significant and
undermines some of the security properties ascribed to QKD: it can even lead to loss of
integrity and confidentiality of future sessions. Second we propose two mitigations that
prevent key exhaustion in practice, by combining computationally secure authentication
with ITS authentication. The resulting protocol provides computational protection against
key exhaustion without compromising the confidentiality and integrity of the QKD out-
put key material. We provide arguments for both the security and the necessity of this
mitigation for any real-world deployment of a QKD protocol.

1.1 Outline

In Section 2 I review the necessary background for this chapter. Section 3 discusses key
exhaustion in detail, describing its impact and the importance of preventing it. Sections 4
and 5 describe and analyze the two mitigations we propose, while Section 6 compares the
two and suggests a method for combining them. A deployment of these mitigations is
not necessarily secure, so Section 7 highlights some security considerations that apply. I
conclude the chapter with a discussion in Section 8.

2 Background

In this section I consider the cryptography relevant to key exhaustion and our mitigations.
Section 2.1 provides a brief description of QKD, where I note that a high level overview is

10

QKD QKD

Encryption DecryptionPlaintext Plaintext

Secret Key Secret Key

Quantum Channel

Authenticated Channel

Public Channel

Ciphertext

Alice Bob

Mallory

Figure 2.1: QKD with the application of message encryption.

sufficient for this chapter: no detailed description of the quantum channel or any quantum
information is required. I then discuss computational authentication, focussing on sym-
metric cryptography in Section 2.2 and asymmetric cryptography (specifically: hash-based
signatures (HBS)) in Section 2.3. Finally, Section 2.4 discusses a recent proposal that
provides DoS protection to computationally secure QKD.

2.1 Quantum key distribution

In quantum key distribution (QKD), Alice and Bob aim to derive a fresh shared secret key.
They will communicate over a public (non-confidential and non-authenticated) quantum
channel and a public classical channel, which is authenticated with classical cryptography
(see Section 2.2). I assume that the QKD protocol is “secure”, meaning that the imple-
menting devices satisfy the requirements imposed by the security model, such as having a
local secure environment/laboratory. The guarantee of QKD is that if neither Alice nor
Bob aborts, then the protocol outputs a shared secret bitstring to both of them. Just like
the output of other KEX protocols, the resulting key can be used for arbitrary purposes,
for example to encrypt a message as shown in Figure 2.1.

For the security of QKD we consider outsider adversaries. We distinguish passive
adversaries that only eavesdrop on the communication from active adversaries that can
also tamper with the communication. In the presence of a passive adversary the protocol
will output a key1 and that key is statistically indistinguishable from a random key. Note
that eavesdropping on a quantum channel is generally impossible to do without altering the
communication itself, so that is classified as an active attack. Under the assumption that
active adversaries cannot tamper with messages over the classically authenticated channel

1We assume that the QKD protocol is robust against environmental noise.

11

undetected, all they can do is force the protocol to abort, but if neither party aborts, then
the output is an ITS key. Stated differently, QKD can be as secure as the authentication
of the classical channel.

2.1.1 Purpose of QKD

QKD is often dismissed by its critics, but this dismissal is not always justified. Part of the
misunderstandings surrounding QKD are driven by misinterpretation of technical terms:
this mistake is not only made by science journalists,2 but also in the academic literature
itself. Terminology in the context of quantum cryptography can be confusing, especially
when standard technical terms from security research get a slightly different meaning.

It has often been said that QKD provides unconditional security [May01], which has
often lead to false expectations about QKD [PPS07]. In this context the term unconditional
has a narrow technical meaning, namely the indistinguishability of the key is not conditional
on the computational intractability of some underlying mathematical problem. There are
however several assumptions underlying the real-world security of any QKD deployment.

One assumption is the real-world security of the QKD hardware and software: adver-
saries should not be able to extract secret information from it and should not be able to
influence its functionality. The research area of quantum hacking [JSK+16] provides many
attacks on QKD deployments that fail to meet this assumption. Some protection can be
provided by so-called device-independent QKD [PAB+07]:

It is therefore “device independent” in the sense that it needs no knowledge
of the way the QKD devices work, provided quantum physics is correct and
provided Alice and Bob do not allow any unwanted signal to escape from their
laboratories.

The last part of this quote makes it clear that the protocol is secure assuming that there
are no other side-channels. Preventing all side-channels may be extremely difficult to
realize [Rud02; Ber18], although theoretically not entirely impossible [RR20].

Another assumption for security of QKD is that Alice and Bob communicate directly
over a quantum channel. Current implementations of QKD are limited in their distance and
therefore require trusted relays [SPD+10]. Trusted relays only provides security against
adversaries that do not control (some of) those relays, undermining the end-to-end principle

2Searching online for the term “unhackable internet” provides some insight into how wide this is spread.

12

of modern encryption standards. Quantum repeaters [BDCZ98] can extend the quantum
channel so that this is no longer an issue, but further engineering efforts are required before
these repeaters can be deployed in practice.

Despite the above practical issues, there is an advantage that a secure implementation
of QKD can provide over computational cryptography, namely everlasting security [Unr13].
This is a powerful property that protects against harvest-and-decrypt attacks. Since the
QKD output is effectively uniformly random and independent of earlier key material,
an adversary that recorded the conversation cannot guess the key even if they become
computationally unbounded after the conversation happened. In contrast, output from a
computationally secure KEX can always get compromised by an adversary that becomes
unbounded later (or more realistically: one that breaks the computational assumption
later).

Everlasting security is sometimes mistakenly called forward secrecy,3 but the former
protects against cryptanalytic advances while the latter protects against device compro-
mise. Forward secrecy allows users to erase keys from their devices after they have been
used. A device compromise does not leak old message contents, if at least both the key, the
plaintext message itself, and all other information that could lead to recovery were removed
from the device. Unless device compromise is not considered a realistic threat, everlasting
security is only meaningful if the QKD output is used in a forward secure system and all
local data is completely removed afterwards on both endpoints.

2.1.2 Phases of QKD

All known QKD protocols consist of three phases. The first phase describes the commu-
nication over the public quantum channel. It is assumed that Mallory, the adversary, has
full control over this channel: she can intercept, resend, alter, inject or block any message
on the channel. However Mallory has to follow the laws of quantum mechanics, for exam-
ple the no-cloning-theorem applies so that she cannot perfectly clone qubits. Note that
we are not distinguishing prepare-and-measure protocols (in which Alice sends qubits to
Bob [BB84]) from entanglement-based protocols (in which Alice and Bob receive entangled
qubits from an untrusted third party [Eke91]). At the end of this phase, Alice and Bob
measure the quantum states, so that they both have some (classical) key material. However
initially there are few guarantees about this material, for example they may have measured
in incompatible bases or a person-in-the-middle (PITM) could have been present.

3Forward secrecy is also known as perfect forward secrecy, where the term “perfect” is meaningless.

13

The second phase describes the post-processing of the key material from the first phase,
which uses communication over the authenticated classical channel. The following descrip-
tion of phase two is based on [SML09]. The first step is called reconciliation, where Alice
and Bob sift out the key bits resulting from measurements in incompatible bases. After
some error correction on the result, Alice and Bob estimate the security parameter, which
provides an upper bound on the information that Mallory may have about the remaining
shared key material. If there is enough secrecy left, Alice and Bob apply privacy amplifi-
cation: they compress the key material to a shorter key on which Mallory has negligible
information. In the last step they confirm that they agree on a few key bits and use the
rest for the last phase.

The last phase is called key usage. Assuming that the previous phase was not tampered
with, the result is an ITS key. Besides using the key directly for data encryption (which
may not be practical as it requires a lot of key material) there are other use-cases that
benefit from having an ITS key. We consider the details of key usage out of scope in this
work, but we do focus on the use case that an ITS key is required as output of the second
phase.

An essential part of the second phase is the authentication of messages exchanged be-
tween Alice and Bob. Without this authentication Mallory can impersonate either party
and compromise the security of the resulting key material. In order to achieve ITS authen-
tication on a public channel, Alice and Bob must initially share some key material, which
is why QKD is sometimes called quantum key expansion. Whenever a party authenticates
one or more messages, they consume some of their key material (meaning that the key can-
not be used for any other purpose) just like encrypting with a one-time pad consumes the
key. In most QKD literature this is not considered a problem since a successful completion
of the second phase results in a large key, part of which can be used for authenticating
subsequent QKD sessions. What has not yet been considered sufficiently is what happens
when the second phase does not successfully complete and no new key material comes from
the second phase, yet some key material has been consumed. An adversary can exploit
this and successfully execute a key exhaustion attack on any QKD protocol.

2.2 Message authentication codes

A message authentication code (MAC) asserts the authentication of a message by using a
shared secret key. A MAC-tag is attached to a message, computed from both the key and
the message, which proves that the received message/tag-pair originated from somebody
that knows the corresponding secret key and was unaltered in transit.

14

A MAC scheme is a tuple (G,S, V) of algorithms. Given the security parameter λ, a key
is generated as k $← G(1λ). To authenticate a message m you compute a tag t $← S(k,m),
which can then be verified by computing V (k,m, t), which returns a bit indicating if the
tag is valid. For correctness it has to hold that V (k,m, S(k,m)) = 1 with overwhelming
probability. For most MAC-schemes G samples the keyspace uniformly at random, S is
deterministic and V recomputes the tag on the received message and compares it with the
received tag (note that this also implies perfect correctness). It is therefore common to
leave G and V implicit and only describe S, which is then simply called the MAC function
or just the MAC.

A MAC scheme is said to be secure if it an adversary has negligible (in the security pa-
rameter) probability of winning the existential unforgeability under chosen message attack
(EUF-CMA) game, defined as follows.

Definition 2.1 (EUF-CMA game). Given security parameter λ, MAC scheme (G,S, V),
and adversary A, run the following experiment:

1. Generate a key k $← G(1λ).

2. Run (m, t)
$← AS(k,·),V (k,·,·) and record each adversary query m′ to S(k, ·).

3. Output V (k,m, t) if m is not recorded, otherwise output 0.

Write EUF-CMA(G,S,V)
A (1λ) for the output bit of the experiment.

In the EUF-CMA game, the adversary has oracle access to S and V under key k. By
recording the queries, we exclude the attack where the adversary outputs a message/tag
pair that it received directly from S(k, ·). In other words, the adversary should find a valid
tag for a new message. If the game allowed such an attack it would become trivial. It
also means that MACs do not protect against replay attacks, where the adversary sends
recorded message/tag-pairs.

Definition 2.2. A MAC scheme (G,S, V) is (weak) EUF-CMA-secure if for all polynomial
time adversaries A:

Pr[EUF-CMA(G,S,V)
A (1λ) = 1] ∈ negl(λ). (2.1)

The probability in Equation (2.1) is also called the advantage of the adversary. Oracle
queries are assumed to have unit cost, so that the adversary can do only polynomially
many queries.

15

A stronger variant of Definition 2.1 is called strong EUF-CMA (sEUF-CMA): the dif-
ference is that the adversary also wins if they output a new tag on any message, including
messages on which S was queried.

Definition 2.3 (sEUF-CMA game). Given security parameter λ, MAC scheme (G,S, V),
and adversary A, run the following experiment:

1. Generate a key k $← G(1λ).

2. Run (m, t)
$← AS(k,·),V (k,·,·) and for each query t′ $← S(k,m′), record (m′, t′).

3. Output V (k,m, t) if (m, t) is not recorded, otherwise output 0.

Write sEUF-CMA(G,S,V)
A (1λ) for the output bit of the experiment.

Most definitions of MAC-security do not make the distinction between strong and weak
security, since usually S is deterministic and V recomputes the tag. Then each message
has a unique valid tag and both definitions are identical. I distinguish them here, because
it can have implications in our construction later. An almost identical security definition
applies to public key authentication in the form of signatures, with the difference that the
adversary is given the public key instead of access to the verification oracle. The distinction
between weak and strong existential unforgeability is more often relevant for signatures.

2.2.1 Wegman-Carter

Wegman-Carter MACs [WC81] are a scheme for generating an ITS message tag for a
message. The Wegman-Carter construction uses a universal hash function: a function
sampled uniformly from a strongly universal2 family.

Definition 2.4 (strongly universal2). Given a message spaceM and a security parameter
λ, a family of hash functions H = {h : M → {0, 1}λ} is strongly universal2 if for all
x1, x2 ∈M with x1 ̸= x2 and all y1, y2 ∈ {0, 1}λ (not necessarily distinct):

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] =
1

22λ
. (2.2)

To send n messages, the construction samples a key (h, (b1, b2, . . . , bn))
$← H×{0, 1}λn,

and computes the MAC-tag on message mi as

Ti = h(mi)⊕ bi. (2.3)

16

Whereas h can be recycled for multiple messages, bi act as a one-time pad and must be
discarded after use. From here on we use notation Ti := MAC(bi,mi) to focus on the part
of the key that is consumed, it should be clear from context that this is relative to some
shared secret hash function h.

In their seminal paper [WC81] Wegman and Carter prove that this scheme is informa-
tion theoretically secure (ITS). Security is given as a variant of unforgeability: any (com-
putationally unbounded) adversary given n message/tag pairs (mi, Ti) (with mi chosen by
the adversary), has probability at most 2−λ to output a valid (m,T) for any m ̸∈ {mi}.

They also prove that their scheme is asymptotically optimal in the number of bits
consumed per message. They prove that a key with Ω(nλ) bits is required to authenticate
n messages that are unforgeable with negligible probability. Their scheme requires K+nλ
bits, where K is the number of bits required to specify h ∈ H. K grows with the size of the
messages that can be authenticated. Subsequent research on ITS MACs has been able to
shrink K considerably and further research on QKD shows that not every post-processing
message is required to be authenticated. However we assume that some upper bound on
the post-processing transcript size is known, so that a reasonably small K suffices. More
importantly, h is chosen once per pair of principals and it is never consumed.

Our mitigation authenticates QKD sessions with ITS MACs, and replenishes the au-
thentication keys with some of the QKD output. Composing ITS authentication with QKD
in this way has been proven secure by Portmann [Por14].

2.2.2 Alternate symmetric authentication

The protocols by Renner and Wolf [RW03; RW04] allow ITS QKD post-processing from the
assumption that Alice and Bob have correlated bitstrings, on which the adversary has lim-
ited knowledge. That is are weaker assumption than those required for ITS MACs, where
Alice and Bob must share an identical bitstring on which the adversary has no knowledge.
They achieve this by replacing authentication tags with the interactive protocol AUTH.
However that protocol also consumes the input bitstrings, both upon message acceptance
and rejection, so that these protocols are similarly vulnerable to key exhaustion. Our miti-
gation could use the AUTH protocol for ITS authentication, but MACs are preferred since
they require sending only a single message.

17

2.2.3 Authenticated channels

Authenticated channels are an abstraction that simplify modeling protocols, but some
nuance is lost in the abstraction that turns out to be critical for security. The main
difference on which we focus is the earlier mentioned one: ITS authentication keys can
only be used once. Although the authentication tag can be sent multiple times (possibly
over redundant channels), the used key must not be used for any other purpose.

Another difference between MAC tags and an authenticated channels is that tags give
the choice of when to authenticate: do we attach a MAC tag to every message or do we
send multiple messages, only to send a MAC tag computed over all messages at the end?
As we will discuss in Section 3, this choice impacts the ease with which to execute the key
exhaustion attack. Many models (if they consider such details at all) only consider the
first option: attach a tag to each message.

We are not the first to observe this property of ITS authentication methods. In fact,
the first QKD paper [BB84] states:

Key bits are gradually used up in the Wegman-Carter scheme, and cannot
be reused without compromising the system’s provable security; however [. . .]
these key bits can be replaced by fresh random bits successfully transmitted
through the quantum channel.

In this chapter we concentrate on what happens if transferring those fresh random bits is
unsuccessful. As it turns out, it opens up to protocol to a key exhaustion attack in which
an attacker manages to deplete legitimate users of all their ITS key material.

2.3 Hash-based signatures

Because of the management of the authentication keys, QKD necessarily is a stateful
protocol. Computational cryptography also has a stateful primitive in the form of stateful
HBS. For a meaningful comparison later (see Section 7.2) a brief description is in order.

We briefly describe Merkle signatures [Mer89], a simple HBS system, see also Figure 2.2.
Merkle signatures are based on one-time signatures (one signature per keypair, similar to
how Wegman-Carter MACs must only send one tag per key). As the name implies, the
one-time signature is no longer secure when used to sign two (different) messages. One-
time signatures can be built from hash functions, the most basic example being a Lamport
signature [Lam79]: given some security parameter λ and a hash function h : {0, 1}∗ →

18

n0 = h(n1, n2)

n1 = h(n3, n4) n2 = h(n5, n6)

n3 = h(pk0) n4 = h(pk1) n5 = h(pk2) n6 = h(pk3)

pk0 pk1 pk2 pk3

Figure 2.2: An example of a Merkle tree: the public key in a stateful HBS. Given one-time
keypairs (ski, pki) for 0 ≤ i < 4, the private key is (sk0, . . . , sk3) and the public key is n0,
constructed as above with some hash function h. Take for example the third signature:
let σ = S(sk2,m) be a one-time signature, then the signature (σ, 2, pk2, n6, n1) is valid if
V (pk2,m, σ) = 1 and h(n1, h(h(pk2), n6)) = n0.

{0, 1}λ, the private key consists of λ pairs (x0, x1)
$← {0, 1}2λ, and the public key consists

of λ pairs (h(x0), h(x1)). To sign a message m, let mi be the i-th bit of h(m), then the
signature consists of λ values xmi

.

Key generation generates many one-time keypairs and stores the public keys in the
leaves of a binary tree. Each intermediate node is a hash of its two children. The secret
key consists of all one-time secret keys, the public key is the tree root. A signature consists
of a one-time signature, the corresponding public key, its leaf index, and all direct siblings in
the path from the leaf to the root. To verify a signature, verify the one-time signature with
the given public key and then retrace the path to the root to ensure that a valid keypair
was used. The signer has to locally maintain its state to ensure no one-time keypair is used
more than once.

Another reason that HBS can be relevant for QKD is that in theory it allows a con-
struction of signatures only from the assumption that one-way functions exist, a weaker
assumption than required by other public-key authentication systems. This allows boot-
strapping of QKD (without a shared secret key) from minimal computational assumptions.

State of the art work has brought many improvements over the basic scheme described
above. Practical schemes with mature implementations exist as extended Merkle signature
scheme (XMSS) [BDH11], which is standardized by the Crypto Forum Research Group
(CFRG) [HBG+18], and SPHINCS+ [BHK+19], which is a stateless variant and NIST
round 3 alternate candidate [NIST17].

19

2.4 BB84-AES

The BB84-AES protocol by Price, Rarity and Erven [PRE20] prevents a different attack on
availability in BB84: they reduce the time until tampering with the qubit encoding bases
is detected. In BB84-AES, the sender computationally encrypts and authenticates each
basis and sends this in parallel with the encoded qubit itself. Since both solutions provide
protection against DoS attacks, we briefly compare their protocol against our mitigation.

BB84-AES is only computationally secure key against an active adversary, whereas our
mitigation focusses on producing an ITS key, making their protocol incompatible with
ours. Their protocol only replaces BB84 with the application of data encryption using the
Advanced Encryption Standard (AES) in the key usage phase, whereas our mitigation is
agnostic of both the specific QKD protocol and key usage. We recognize the importance
of preventing the DoS attack they describe, but as engineering efforts keep increasing the
key-rate of QKD, simply lowering the post-processing blocksize could limit the impact of
this attack in practice.

The authors state that BB84-AES “inherently resists attempts to exhaust Alice and
Bob’s initial shared secret”, but omit an important detail to assess the validity of the
claim. In the final step of post-processing in BB84-AES “bits are taken from the final
key and stored for use as the initial secret in the next round of QKD”. The simplest
interpretation is that the initial secret gets replaced, in which case the protocol is vulnerable
to desynchronization (see Section 3). Even if Alice and Bob prevent desynchronization (for
example using a variant of our mitigation) it is unclear why synchronization is required at
all. Since the protocol uses computational primitives, the simpler solution would be to use
a static shared key from which a session key can be derived using standard cryptographic
techniques.

3 Key exhaustion

The post-processing phase of any QKD protocol can have two possible outcomes: either
Alice and Bob conclude they share enough secret key material to generate new keys or
they have to abort without generating any new key material. When the initial quantum
communication contained too much noise (either from the environment or from an eaves-
dropper) Alice and Bob cannot distill a shared secret key from the quantum measurement
outcomes and have to abort. We assume that the protocol is robust against environmental
noise on the quantum channel: if the environmental noise is below a certain threshold, then
the protocol will not abort and output a secure key. Another reason Alice or Bob might

20

have to abort is that the verification of message authentication on the classical channel
fails, indicating interference from a third party.

When QKD attempts to generate ITS keys, the classical channel must have ITS authen-
tication as well. For every ITS authentication tag Alice or Bob sends, they must discard
the key they used. An adversary may exploit this by forcing Alice and Bob to send tags
even though it will not result in them generating fresh key material, thereby exhausting the
key. Storing N keys just means that the full key is exhausted after N successful attacks.

Technically, authentication failure could be a consequence of environmental noise. Clas-
sical communication can be encoded with sufficient redundancy to make this occur with
low probability only. In practice any communications protocol will have to deal with mes-
sage delivery failing. For our purposes we assume that an underlying message transport
layer is responsible for robust message delivery, which may include message acknowledge-
ments, resend requests and even sending messages over redundant channels. Given that
the cost of losing messages in QKD is much higher than for many other protocols (as it
may lead to key exhaustion even without an active attacker), the transport layer should
be configured/implemented to minimize message delivery failure.

A possible objection to calling key exhaustion a legitimate attack, is that QKD gener-
ates exponentially many key-bits in the number of key-bits consumed for authentication.
One may thus point out that once sufficient key material has been generated the key
exhaustion attack becomes impractical for most adversaries. Our rebuttal is three-fold.
First, the attack is still linear in the stored key-length, so that there is no significant gap
between the cost for generating and exhausting the keys. Second, such an asymptotic
statement neglects the constants that are important for real-world systems. A common
critique on contemporary QKD systems is their low key-rate and extracting many bits
to protect against key exhaustion would be a very impractical solution for the near-term
future. Third, it requires that legitimate parties securely maintain an exponentially large
state, including secure updating and deletion of keys. This third problem is exacerbated
in network QKD systems, where the symmetric nature of ITS authentication means that
secure keys must be stored for every pair of nodes in the network, making this problem
quadratically larger.

We classify the methods available for the attacker to achieve key exhaustion. Depending
on how ITS authentication is implemented, all QKD protocols could be vulnerable (and we
believe they are) to one or more of these attacks. We provide some examples of protocols
that are explicitly vulnerable, but we observe that most protocols simply assume an au-
thenticated channel, thereby not providing the details to determine which vulnerabilities
apply.

21

Noise on the quantum channel. When Alice and Bob attach an ITS tag to indi-
vidual messages, the attacker achieves key exhaustion simply by sending sufficient noise on
the quantum channel. The recipient of the noise will authenticate their first post-processing
message and must discard the used stored key. Alice and Bob will only detect the noise
after having consumed some key material this way. Since the number of messages until
the first abort is constant for any specific protocol, the attack depletes N keys with O(N)
effort. Examples of explicitly vulnerable protocols are [DHHM99; GH00; PNM+05].

Tampering with messages on the classical channel. The attack becomes slightly
less trivial when Alice and Bob authenticate only at the end of phase two. Sending noise will
not exhaust keys, since Alice and Bob will abort if the post-processing messages indicate
that there is insufficient fresh key material, which is before any ITS key material has been
used for authentication. However a PITM attack or other tampering with post-processing
messages will only be detected by the ITS tag at the end, at the cost of consuming an ITS
key. An example of an explicitly vulnerable protocol is [Ina02].

Desynchronization. The solution to the above is to send all post-processing mes-
sages over a computationally authenticated channel, as further detailed in Section 7.1,
followed by ITS authentication to prove integrity of the entire protocol transcript. We are
not the first to suggest this, see for example [PRE20]. However, almost all implementations
run into the problem of secure state synchronization: assume Alice updates her state first
and then sends a message to Bob so he also knows to update his state: if that message is
blocked the local states of the two parties are desynchronized. For example if both parties
store a single authentication key that is replaced at the end of a protocol, then blocking
one message desynchronizes the parties and effectively exhausts the shared key. Similarly,
N keys could be exhausted with N successful desynchronizations.

Alice and Bob cannot solve this with simple delivery confirmation messages, because
that runs into the two generals’ problem: if Alice only updates her state after getting
the confirmation that Bob did, then Mallory can desynchronize them by blocking the
confirmation message itself. Confirming the confirmation message itself shifts the problem
over again.

In theory only an adversary that can indefinitely block all messages can prevent the
session from completing. However in practice it means that Alice and Bob have to securely
maintain a large state until the protocol completes. Keeping that large state only in
volatile memory means that a single error (such as a power failure) could lead to key
consumption/exhaustion, while keeping such a large state synchronized with persistent

22

memory (storage) is non-trivial to do securely [MKF+16]. Many existing DoS attacks
are based on exhausting resources by forcing devices to hold on to too many such states.
Any mitigation to preventing key exhaustion that also wants to be robust against other
DoS attacks should therefore be able to abort the protocol at any time while maintaining
only a small state in persistent memory. We are not aware of any QKD protocol with
countermeasures against desynchronization.

3.1 Aborts

We distinguish four causes for QKD aborts:

(i) post-processing failure: there was too much noise on the quantum channel;

(ii) time-out: the other party fails to reply in time;

(iii) system crash: for example due to a power outage; and

(iv) incorrect ITS tag.

If computational verification of an incoming message fails, including out-of-order or re-
played messages, the protocol could either abort or the message could be ignored. Either
way, a computationally bounded adversary that tampers with or blocks messages will even-
tually trigger a protocol abort explicitly or implicitly through a time-out. In case of cause
(i) or (ii), the aborting party could optionally send a message indicating they aborted to
allow quick initiation of the next session. Cause (iii) can happen at any time, which is why
proper state management is so important.

In both our mitigations all ITS tags are computationally authenticated, so that an
abort by cause (iv) indicates that the computational authentication was somehow broken.
Aborting ensures that the security of any QKD output is not compromised, although the
mitigation against key exhaustion may no longer be effective. We recommend that the
protocol transcript is recorded as evidence of this breach of the computational security.4
If indeed the key is exhausted, appropriate handling is required, as further specified in the
next section.

4If the secrecy of this record cannot be guaranteed and the ITS key is used for future sessions, the
expected ITS tag must not be logged since this could compromise the security of future QKD sessions.

23

3.2 Consequences beyond availability

Key exhaustion is primarily an attack on availability, so it can be classified as a DoS attack.
In theory DoS cannot be prevented by any cryptographic or security measure: if we assume
the attacker has full control over the channel they can simply block all messages. For this
reason some of the QKD literature dismisses DoS attacks in general. However in practice,
no adversary truly has indefinite full control of the channel and some attacks are worse
than others. An additional reason to focus on key exhaustion is that it is likely to have
consequences beyond reduced availability, unlike many other DoS attacks.

Once a key is exhausted, Alice and Bob first have to decide if they want to recover from
it at all. If QKD has no way of recovering from key exhaustion, then key exhaustion blocks
all secure communication between two nodes permanently. If a key exhaustion attack
succeeds, it can provide a great payoff from the perspective of the adversary. Consider
for example satellite-based QKD using ITS authentication on every message [CZC+21]: a
malicious party can exhaust the keys and turn an expensive satellite into space-junk by
shining a light on it. In almost every context it is unacceptable for users to have no secure
communication channel at all. In practice, if the system will not fall back to some lower
level of security, the users themselves will.

Recovery is thus required in all but a few rare cases. The next decision is whether to
automate recovery or to require human interaction in the recovery process. We shall refer
to automated methods as a recovery protocols, whereas we call a non-automated method a
recovery ceremony [Ell07]. For example, the common suggestion [ABB+14] for a recovery
protocol is to run QKD with only public key authentication, whereas a common suggestion
for a recovery ceremony is to employ trusted couriers. We argue that prevention protocols
(such as the ones given in this chapter) are preferable to recovery protocols.

Any recovery protocol must be authenticated, otherwise a trivial PITM or imperson-
ation attack compromises the security of the new keys. Using ITS authentication for the
recovery protocol does not help, because then the recovery protocol itself will be vulnerable
to key exhaustion. Thus the recovery protocol must be computationally authenticated: let
Ar be the authentication system that secures the recovery protocol. On the other hand,
let Ap be the computational authentication system that secures the prevention protocol.

An immediate improvement of the above system is to combine both Ap and Ar to secure
the prevention protocol. For example if Ap and Ar are both MACs, then two tags can be
attached to every message. An adversary that can only break Ap can exhaust the keys in
the first system, but not in the second. In other words, for every secure recovery protocol
there exists a secure prevention protocol that puts more limitations on the adversary’s
capability to tamper with the communication.

24

That leaves us with ceremonies to recover from key exhaustion. Ceremonies require
human interaction and therefore do not scale well, however our mitigation ensures that key
exhaustion is a security failure, so that key exhaustion should occur sufficiently infrequently
to make these demanding recovery methods realistic. For any real-world deployment of
QKD, we recommend that implementers design a recovery ceremony, tailored to the context
of the deployment. Preferably the ceremony includes an offline comparison of the protocol
transcripts to detect security failures of the computational authentication.

One may ask why recovery is necessary when we already have prevention. First note
that key exhaustion is only computationally prevented, so there could theoretically be a
sufficiently powerful adversary that can exhaust the keys. Furthermore the real world
contains edge cases where the shared keys must be replaced, such as key loss due to
hardware failure or human error, or when suspicion exists that a key has been leaked.

When QKD has a method for recovery (whether protocol or ceremony), key exhaustion
will not just be an attack on availability, but instead it is a stepping stone in an attack on
the integrity (and thereby on the secrecy) of future QKD sessions.

3.3 Key exhaustion against computational cryptosystems

Computationally secure systems can take some security measures to mitigate the impact of
DoS attacks. The key idea in these mitigations is to increase the cost of the attack beyond
the point where executing and/or maintaining the attack is worth it.

The key exhaustion attack does not apply exclusively to QKD and even extends be-
yond ITS systems. Computational cryptography also has a limit on how often a key can
be used until no more security can be guaranteed, even assuming the underlying compu-
tational assumption is correct. For example the probability of a nonce collision, which
would undermine the security guarantees, can become unacceptably large if too much data
is encrypted and/or authenticated with the same key. This limit is often high enough that
it makes a key exhaustion attack impractical for sufficiently large keys. For most compu-
tational systems the cost for exhausting the key is exponential in the security parameter,
compared with a linear cost for exhausting ITS systems. This makes the cost of losing a
single signature or MAC tag so low that real-world cryptographic protocols simply abort
incomplete sessions and try again during an active DoS attack, without much effort to
resend the lost messages.

An interesting computational cryptosystem to consider here is a stateful HBS scheme,
which will explicitly run out of key material, just like an ITS system. The key is exhausted
when all leaves of the Merkle tree are consumed, thus the cost of exhausting the key is

25

linear in the time required for generating the tree. However when the private keys are
derived from a small seed, for example as is done in XMSS [BDH11], then an honest party
only has to maintain a small state.

3.4 Key exhaustion without computational cryptosystems

As a final thought experiment, consider QKD in a world without computational cryptog-
raphy. The protocol will be vulnerable to key exhaustion, either by noise on the quan-
tum channel or by tampering with the classical channel, depending on whether individual
messages or the transcript is authenticated. I suspect that preventing key exhaustion is
impossible in such a world.

4 A decoy-based mitigation

The decoy-based mitigation5 prevents key exhaustion by making the cost for exhausting
the key exponential in the number of stored keys. Phase one of QKD (quantum state
transmission and measurement) and phase three (key usage) remain unaltered. All classical
messages (including decoy and ITS tags) are sent over a computationally authenticated
channel, as specified in Section 7.1. If any step of the protocol fails, then the protocol
aborts and all unauthenticated key material from phase one is discarded.

4.1 Construction

A high-level overview of our mitigation is provided in Figures 2.3 and 2.4. The main idea
of this protocol is to obscure when the authentication is being done. This is achieved by
probabilistically hiding the message containing the ITS authentication tag among multiple
decoy messages.6 Whenever Alice and Bob detect any tampering with the decoy messages
they can abort without having consumed an ITS key. Alice and Bob store multiple keys:
the adversary can consume some keys by correctly guessing and blocking the real authen-
tication message. However by increasing the number of decoy rounds as more keys are lost,
Alice and Bob make the probability that the adversary consumes all keys negligible.

5The term decoy was coined by Brian Neill of evolutionQ.
6Decoy authentication messages should not be confused with decoy state QKD [Hwa03], which is a

technique that allows secure QKD with practical multi-photon sources instead of theoretically perfect
single-photon sources.

26

Quantum state
transmission and
measurement

abort

Post-processing

Round scheduling

for r = 0 to d

Decoy
authentication

Real
authentication

Replenish
consumed keys

Key usage

Computational
key

ITS keys

raw key bits

`, kq
k′q

d

r < dr := r + 1

r = d

k′′q

consume

Figure 2.3: Flowchart of the decoy-based QKD key exhaustion mitigation. Successful
post-processing of the raw QKD output results in shared key kq, while ℓ indicates how
many ITS keys were lost (for example due to earlier attacks). At most ℓ bits of kq are
used to schedule the amount of decoy authentication rounds (d), leaving bits k′q. Real
authentication consumes some ITS keys, which will be replenished from k′q, leaving bits k′′q
for key usage.

27

Alice (A) Bob (B)

quantum communication

m1, B.ib, B.ja, B.jb

m2, A.ia, A.ja, A.jb

...
mn

T0

...
Td−1

Td := MAC(B.Kb[B.ib], t)
delete(B.Kb[B.ib])
B.ib := B.ib + 1

Td

if Td 6= MAC(A.Kb[B.ib], t):
abort()

delete(A.Kb[A.ib, . . . , B.ib])
A.ib := B.ib + 1
Td+1 := MAC(A.Ka[A.ia], t)
delete(A.Ka[A.ia])
A.ia := A.ia + 1
replenish(A.Ka, A.Kb)
A.ja := A.ia +N
A.jb := A.ib +N

Td+1

if Td+1 6= MAC(B.Ka[A.ia], t):
abort()

delete(B.Ka[B.ia, . . . , A.ia])
B.ia := A.ia + 1
replenish(B.Ka, B.Kb)
B.ja := B.ia +N
B.jb := B.ib +N

“done”

Figure 2.4: Sequence diagram of QKD with the decoy-based key exhaustion mitigation.
All classical messages are sent over a computationally authenticated channel. The key
indices ia, ib, ja and jb indicate which keys (Ka, Kb) the parties have stored. Tags Td and
Td+1 (with d ≥ 0) provide ITS authentication over the protocol transcript (t). Decoy tags
(T0, . . . , Td−1) are locally generated random values, and are only required when the system
is under attack. 28

Phase two can further be split in parts: the first part consists of the regular QKD post-
processing. This part is modified to include indices of ITS keys in the messages to prevent
desynchronization. The second part consists of the actual authentication: sending multiple
decoy tags to hide the real ITS authentication tag, followed by the real authentication tag.
The real tag ensures ITS authenticity of post-processing, as it is computed over the entire
post-processing transcript. The key that was used to compute the real ITS tag must be
securely discarded just before the tag is sent, to ensure it is never used again. Once both
parties have received and verified the real tags, they have a guarantee that the fresh QKD
key material is authentic and they can use it for replenishing consumed keys.

Under normal circumstances, Alice and Bob share the key material (KA, KB), which
are lists of multiple ITS authentication keys for use in both directions: Alice authenticates
using KA and Bob uses KB. In the current session Alice will use KA[A.ia] (the first unused
key in her list) and Bob uses KB[B.ib].

Alice and Bob compute ℓ, a number indicating how many keys were lost, from the
indices sent in the first messages and sample d, the number of decoy rounds, from the last
ℓ bits of the QKD output kq, as described in detail in Section 4.1.1. A few of the fresh bits
of kq will possibly be consumed by the decoy round scheduling, depending on how many
keys are left: k′q denotes the bits that are not used for computing d. In rounds d and d+1
Alice and Bob will send real ITS authentication tags, while for rounds r with 0 ≤ r < d
they will send decoy tags.

Real tags are computed over the entire protocol transcript7

t = (m1, B.ib, B.ja, B.jb,m2, A.ia, A.ja, A.jb,m3, . . . ,mn) (2.4)

so that
Td := MAC(B.Kb[B.ib], t) (2.5)

and
Td+1 := MAC(A.Ka[A.ia], t). (2.6)

Here we assume Bob sends the first real tag, otherwise Alice would send Td and Bob would
send Td+1.

Decoy tags are generated such that they are indistinguishable from the real tags, to
prevent the adversary from knowing which tag to block for successful key exhaustion. This

7If the protocol uses nonces to prevent replay attacks, the transcript must include the nonces Na and
Nb: t = (m1, B.ib, B.ja, B.jb, Nb,m2, A.ia, A.ja, A.jb, Na,m3, . . . ,mn).

29

is achieved by computing the decoy tag like the real ITS tag but with a random key. For
0 ≤ r < d:

Tr := MAC(Kr, t), (2.7)

where Kr is a locally generated random value. See Section 7.4 for further security consid-
erations regarding decoy tag generation.

After the real authentication passed successfully, both parties replenish any consumed
keys in their ITS key storage using key bits from k′q.

This means that kq must be sufficiently large to guarantee the ITS key storage can al-
ways be fully replenished, before initiating the second part of providing ITS authentication
of the transcript. Either the post-processing blocksize should be chosen sufficiently large, or
multiple QKD iterations (including computationally authenticated post-processing) could
be executed until the concatenation of all outputs is sufficiently large.

Of course any message may be dropped by the adversary, with the result that A.Ka ̸=
B.Ka and/or A.Kb ̸= B.Kb. If message Td was dropped in a previous session, its sender
has already consumed a key but the recipient does not know yet. Therefore both Alice
and Bob send their index i to indicate which sending shared key they have not consumed
yet. On the other hand if message Td+1 was dropped in a previous session, the sender
has already replenished both Ka and Kb, but the recipient was not yet able to do so.
Therefore both Alice and Bob send the indices ja and jb to indicate how many keys they
were able to replenish already. If it turns out one party replenished more keys than the
other, these indices tell them those keys are not shared and they should be overwritten by
future replenishments. Although Figure 2.4 shows that the indices are sent alongside m1

and m2, they could be sent alongside any post-processing message.

Finally we note that the recipient of the final message (Td+1) should always be the one
to initiate the key usage phase, so that the act of initiating this phase does not reveal that
message Td was real. Since not every context allows key usage to be initiated by either
party and the honest parties do not know in advance if d is even or odd, we include an
optional “done” message as the final message of phase two. This confirms message Td+1

was delivered and verified successfully, signalling that the key usage phase can start. An
adversary can trivially distinguish the “done” message from authentication messages and
block it, but at that point both honest parties have already replenished all ITS keys and
blocking the “done” message has the same effect as blocking the key usage phase itself.
The “done” message must be computationally authenticated: otherwise an adversary could
hold on to any message and reply with “done” to learn if the held message was message
Td+1 and only deliver it if it was not.

30

4.1.1 Round scheduling

The round scheduling computes the number of decoy rounds using a few bits of the (fresh)
key output from post-processing. The maximum number of decoy rounds equals the number
of keys that were lost, for example because of previous key exhaustion attacks. This also
means that when the protocol is not under attack and no keys have been lost, zero decoy
rounds are required and no fresh key bits are consumed.

First Alice and Bob determine ℓ: the number of lost keys, which can be derived from
the indices sent in the first two messages. Let N be the size of key stores Ka and Kb when
they are full, where N is a sufficiently large public parameter (see Section 4.2.3). Before
every session Alice and Bob hold the states A and B respectively, with:

A.Ka = [Ka[A.ia], . . . , Ka[A.ja − 1]]

A.Kb = [Kb[A.ib], . . . , Ka[A.ja − 1]]

B.Ka = [Ka[B.ia], . . . , Ka[B.ja − 1]]

B.Kb = [Kb[B.ib], . . . , Kb[B.jb − 1]],

where the indices themselves are also stored in the state. Initially A.ia = B.ia = A.ib =
B.ib = 0 and A.ja = B.ja = A.jb = B.jb = N .

Alice and Bob compute ja = min(A.ja, B.ja) and jb = min(A.jb, B.jb), so they know
the agree on the shared subset A.Ka∩B.Ka = [Ka[A.ia], . . . , Ka[ja−1]] and A.Kb∩B.Kb =
[Kb[B.ib], . . . , Kb[jb − 1]]. Thus

ℓa = N − |A.Ka ∩B.Ka| = N − ja + A.ia (2.8)

and
ℓb = N − |A.Kb ∩B.Kb| = N − jb +B.ib (2.9)

and we simply set
ℓ = max(ℓa, ℓb). (2.10)

If either ℓa = N or ℓb = N , then Alice and Bob cannot complete the ITS authentication and
the keys have been exhausted. Otherwise, Alice and Bob should replenish ℓa + ℓb + 2 keys
at the end of the current session: the keys already lost plus the two keys for authentication
of the current session.

Given the B-bit QKD output kq ∈ {0, 1}B, Alice and Bob sample d, the number of
decoy rounds, from the last ℓ bits of kq as:

d = ℓ−min ({x | kq[B − x− 1] = 1} ∪ {ℓ}) , (2.11)

31

where the array notation kq[x] means the x-th bit of kq. This can be computed by scanning
the last ℓ bits of kq to find the last bit with value one.8 Sampling d in this way accomplishes
that the number of decoy rounds is likely to be close to ℓ.

The protocol leaks d by completing the session after d decoy rounds plus two real
rounds, after having received and verified the last real message, but importantly this value
must not leak before the end of the session. This leaks the last ℓ − d + 1 bits (or ℓ bits
when d = 0), since those must have been 10 . . . 00 (or all zeroes), so these suffix bits must
be discarded. The remaining bits are k′q, a prefix substring of kq:

k′q = kq[0, . . . , B − 1−min(ℓ, ℓ− d+ 1)]. (2.12)

The bits of k′q do not need to be inspected by the scanning computation, therefore these
bits do not leak and can be used for replenishing lost keys and for key usage.

Alternative round scheduling could be secure, but those are not covered by our proof in
Section 4.2. It is important that such scheduling is biased to schedule many decoy rounds.
Any distribution where d ≤ 1 always has a non-negligible probability can be exhausted
with polynomially many attacks by an adversary that always blocks T1.

4.1.2 Initialization

Initialization is straightforward: if Alice and Bob are assumed to share sufficiently many
key bits, they can set Ka and Kb directly from these shared bits, and set all indices to i = 0
and j = N . When bootstrapping from public key cryptography, they can indicate this by
omitting or using some default values for the indices in the first messages and omitting the
ITS tags altogether from the bootstrapping session.

4.2 Analysis

In this section we analyze the decoy-based mitigation. Assuming that the computational
authentication is secure, we show that the mitigation prevents key exhaustion. We also
answer how many keys should be stored in a real-world protocol, and analyze how many
bits are consumed by the round scheduling.

8It should be computed differently to protect against side-channels, see Section 7.4.

32

4.2.1 Security analysis

A computationally unbounded adversary can break the computational authentication on
every post-processing message. Even with our mitigation this adversary trivially achieves
key exhaustion by setting up a PITM attack. Their presence will only be detected by
the real authentication message at the cost of at least one ITS key, so that attacking at
most 2N − 1 sessions suffices to fully exhaust the ITS keys. Alternatively this adversary
can tamper with the indices in order to make Alice and Bob believe that their keys are
exhausted.

For the remainder of this section we consider an adversary that cannot break the compu-
tational authentication, so that tampering with any message (including real tags and decoy
tags) will be detected by the honest parties. That adversary can block messages, so that
the protocol aborts because of a message delivery time-out, possibly consuming one or two
ITS keys. We prove that our mitigation prevents full key exhaustion by computationally
bounded adversaries.

We model the QKD protocol itself as an ideal key distribution (κ), which can be formal-
ized for example in the universal composability (UC) framework [BHL+05]. Summarized,
when a party does not abort the protocol in this model, they are guaranteed that the out-
put bitstring is shared with the other party and distributed uniformly random. A detail
of that specific model is that Mallory can determine the length of the protocol output.
However, as we require an output long enough to replenish keys, we simply assume that
Alice and Bob also abort if their output is not long enough.

QKD realizes this functionality [BHL+05], but it requires an authenticated channel.
We model that authenticated channel as an ideal authentication functionality (α), secure
against probabilistic polynomial time (PPT) adversaries. When Alice wants to send a
message to Bob (or vice versa), she sends it over the ideal channel: Mallory gets to see
the message and then decide if the message is delivered. Importantly, Mallory is not able
to alter messages or inject her own. In addition to this standard functionality, we also
require that the authentication does not consume any key material, thereby excluding ITS
authentication. See Section 7.1 for more details on how to securely realize this functionality
with computational cryptography.

It is assumed that the adversary knows the maximum number of shared keys (N) and
knows how many sessions they are able to attack (k). From inspection of the messages of
the decoy-based protocol, the adversary also learns ℓ, the number of keys that were already
lost. The following theorem does not consider side-channel attacks. See Section 7.4 for a
further discussion of the side-channel protection that is required for this mitigation.

33

Theorem 2.5. Consider any QKD protocol that realizes ideal key exchange (κ), using
post-processing over a (computationally) authenticated channel (α) that does not consume
any keys, with the mitigation of Section 4.1 applied. Let N be the total number of stored
keys, and let k be an upper bound on the number of sessions that the adversary can attack.

Then for any PPT adversary that can attack at most k ∈ poly(N) sessions:

Pr[adversary consumes all N keys] ∈ negl(N). (2.13)

Proof. By the assumption that communication occurs over an authenticated channel, all
the adversary can do is eavesdrop on the messages and block a message. We distinguish
four possible outcomes of an attack on a single QKD session:

1. the adversary does not block the real authentication and allows Alice and Bob to
replenish all lost keys; or

2. the adversary blocks a decoy message, consuming zero ITS keys; or

3. the adversary blocks the first real message (Td), consuming an ITS key from one
party; or

4. the adversary blocks the second real message (Td+1), consuming two ITS keys (one
from each party).

To simplify the analysis we assume that the third outcome always increases ℓ (even
though actually only ℓa or ℓb is increased), effectively treating the third outcome as identical
to the fourth. We can do this because we only require an upper bound on the probability
of key exhaustion.

Consider one QKD session. Let a be the index of the tag blocked by the adversary
(with 0 ≤ a ≤ ℓ + 1). Let d be the number of decoy rounds, then the possible session
attack outcomes are summarized in the following update function of ℓ:

ℓ :=

0 if a > d+ 1

ℓ if a < d

ℓ+ 1 if d ≤ a ≤ d+ 1.

(2.14)

We can make two simplifying observations. First we note that the adversary should
always prefer a = 1 over a = 0: with both choices the keys are never replenished, but the
former consumes a key both when d = 0 or d = 1, unlike the latter which requires d = 0.

34

Second we note that the adversary should always prefer a = ℓ over a = ℓ + 1, at least
under the assumption that both a = d and a = d + 1 increment ℓ: both choices ensure
that ℓ does not stay the same, but the former consumes a key both when d = ℓ − 1 and
d = ℓ, unlike the latter which requires d = ℓ. In the remainder we can therefore focus on
adversaries that block 1 ≤ a ≤ ℓ (for completeness we mention that a = 1 consumes a key
with certainty when ℓ = 0).

An adversary can see ℓ from inspection of the post-processing transcript, and we assume
that they know k (how many more sessions they can attack). We define the adversary
strategy as the probabilistic function A : (k, ℓ) 7→ a, which gives the value a for all k ≥ 1
and 0 ≤ ℓ < N . Note that both the real tags and decoy tags are distributed identically
(uniformly random), so that there is no advantage for the adversary to base their strategy
on the value of the tags themselves.

Let N be the number of keys and let A be the adversary strategy. We define PN,A(k, ℓ)
to be the probability that the adversary exhausts all N keys in k sessions or fewer, given
that currently ℓ keys are lost. This allows us to rephrase the theorem as follows.

For all k ∈ poly(N) and for all adversary strategies A:

PN,A(k, 0) ∈ negl(N). (2.15)

When N and A are clear from context, we simply write P (k, ℓ) = PN,A(k, ℓ) to simplify
the notation. We have

P (k,N) = 1 (2.16)

for all k, because the key is already fully exhausted, and for 0 ≤ ℓ < N

P (0, ℓ) = 0 (2.17)

because there are no more sessions left to attack. For k ≥ 1 and 0 ≤ ℓ < N we consider
the outcome of attacking the current session. Since Equation (2.14) covers all possible
outcomes, we have the following recurrence relation:

P (k, ℓ) = Pr[a > d+1]P (k−1, 0)+Pr[a < d]P (k−1, ℓ)+Pr[d ≤ a ≤ d+1]P (k−1, ℓ+1).
(2.18)

In the security model, the QKD output kq is uniformly random. Since d is sampled
according to Equation (2.11) from kq, we have

Pr[d = x] =

{
2−ℓ x = 0

2x−1−ℓ 1 ≤ x ≤ ℓ
(2.19)

35

For a fixed a we sum Equation (2.19) grouped by the different outcomes. First note that
for ℓ ≤ 1 we have Pr[d ≤ a ≤ d + 1] = 1, so that P (k + 2, 0) = P (k + 1, 1) = P (k, 2) for
all k ≥ 0. For 2 ≤ ℓ ≤ N , this sums to

Pr[a > d+ 1] =

{
0 a = 1

(1/4)2a−ℓ 2 ≤ a ≤ ℓ,
(2.20)

and

Pr[d ≤ a ≤ d+ 1] =

{
21−ℓ a = 1

(3/4)2a−ℓ 2 ≤ a ≤ ℓ,
(2.21)

and thus
Pr[a < d] = 1− 2a−ℓ. (2.22)

We claim that P (k, ℓ) is bounded as follows.

Claim 2.6. For N ≥ 3, for any adversary strategy A, for all k ≥ 1 and for all ℓ with
0 ≤ ℓ ≤ N :

PN,A(k, ℓ) ≤
(
3

4

)N−ℓ

+ (k − 1)

(
3

4

)N

(2.23)

Proof. We prove the claim by induction on k.

The base case with k = 1 has the bound P (1, ℓ) ≤ (3/4)N−ℓ. Note that for ℓ ̸= N − 1
the bound is immediate, because P (1, ℓ) = 0 for ℓ < N − 1 (there are not enough sessions
left to exhaust all keys) and P (1, N) = 1. Otherwise we have

P (1, N − 1) =

{
22−N if a = 1

(3/4)2a−N+1 if 2 ≤ a ≤ N − 1
(2.24)

Thus P (1, N − 1) ≤ 3/4, because 22−N < 3/4 for N ≥ 3 and because (3/4)2a−N+1 ≤ 3/4
for a ≤ N − 1.

For k ≥ 2 the induction hypothesis states that P (k − 1, ℓ) ≤ (3/4)N−ℓ + (k − 2)(3/4)N

for all 0 ≤ ℓ ≤ N . We split the proof of the induction step in cases based on the value of
ℓ. First we note that for ℓ = N the bound is greater than one, so it holds trivially.

36

Next consider ℓ ≤ 1, so that

P (k, ℓ) = P (k − 1, ℓ+ 1)

≤
(
3

4

)N−ℓ−1

+ (k − 2)

(
3

4

)N

=

(
1 +

1

3

)(
3

4

)N−ℓ

+ (k − 1)

(
3

4

)N

−
(
3

4

)N

=

(
3

4

)N−ℓ

+ (k − 1)

(
3

4

)N

+

(
1

3

(
3

4

)−ℓ

− 1

)(
3

4

)N

<

(
3

4

)N−ℓ

+ (k − 1)

(
3

4

)N

(2.25)

where the first inequality follows from the induction hypothesis and the last inequality
follows from the fact that (4/3)ℓ < 3 for ℓ ≤ 1.

Next we prove the induction step for 2 ≤ ℓ < N . First consider a = 1, so that we get
the recurrence

P (k, ℓ) = 21−ℓP (k − 1, ℓ+ 1) + (1− 21−ℓ)P (k − 1, ℓ)

≤ 21−ℓ

((
3

4

)N−ℓ−1

+ (k − 2)

(
3

4

)N
)

+ (1− 21−ℓ)

((
3

4

)N−ℓ

+ (k − 2)

(
3

4

)N
)

=

(
3

4

)N−ℓ

+ (k − 1)

(
3

4

)N

+
21−ℓ

3

(
3

4

)N−ℓ

−
(
3

4

)N

=

(
3

4

)N−ℓ

+ (k − 1)

(
3

4

)N

+

((
2

3

)ℓ+1

− 1

)(
3

4

)N

<

(
3

4

)N−ℓ

+ (k − 1)

(
3

4

)N

(2.26)
where the last line holds since (2/3)ℓ+1 < 1 for ℓ ≥ 2.

37

Finally consider the other strategies (with 2 ≤ a ≤ ℓ), giving the recurrence

P (k, ℓ) =
3

4
2a−ℓP (k − 1, ℓ+ 1) +

1

4
2a−ℓP (k − 1, 0) + (1− 2a−ℓ)P (k − 1, ℓ)

≤ 3

4
2a−ℓ

((
3

4

)N−ℓ−1

+ (k − 2)

(
3

4

)N
)

+
1

4
2a−ℓ

((
3

4

)N

+ (k − 2)

(
3

4

)N
)

+(1− 2a−ℓ)

((
3

4

)N−ℓ

+ (k − 2)

(
3

4

)N
)

= 2a−ℓ

(
3

4

)N−ℓ

+
1

4
2a−ℓ

(
3

4

)N

+ (1− 2a−ℓ)

(
3

4

)N−ℓ

+ (k − 2)

(
3

4

)N

=

(
3

4

)N−ℓ

+ (k − 1)

(
3

4

)N

+

(
2a−ℓ

4
− 1

)(
3

4

)N

<

(
3

4

)N−ℓ

+ (k − 1)

(
3

4

)N

(2.27)
where the last line holds since 2a−ℓ < 4 for a ≤ ℓ

From the claim it immediately follows that for N ≥ 3

P (k, 0) ≤ k

(
3

4

)N

(2.28)

which is indeed negligible in N for all k ∈ poly(N).

The proof also covers the improvement of Section 4.3, because it assumes that a key
can always be consumed when ℓ ≤ 1.

The above theorem shows that the adversary is expected to attack superpolynomially
many sessions in order to exhaust all keys between Alice and Bob. Small-scale simulations
suggest that the optimal strategy (minimizing the number of sessions to attack) is to block
the ℓ-th tag.9 Consequently there is a significant chance that the adversary misses the real
authentication tag, so that Alice and Bob replenish all keys and share key material for the
key usage phase. As a result, they might choose to delay the initiation of the next QKD
session until much later, when they need more shared ITS key material. Therefore it may
be more effective in practice for the adversary to always block the second authentication

9When ℓ is small or k is small it is sometimes optimal for the adversary to block the second tag instead.

38

tag, ensuring that Alice and Bob are never able to fully complete the session. Attacking
the first round also has the additional advantage (from the adversaries perspective) that
each session aborts earlier and thus takes a shorter amount of time. However the expected
number of sessions that need to attacked in this way is much more than when blocking the
ℓ-th tag.10

4.2.2 Key store size

Whereas Theorem 2.5 shows key exhaustion is asymptotically negligible, in this section
we provide parameters to prevent key exhaustion in the real world. Specifically we find
appropriate values for N : the size of the key stores Ka and Kb.

If we instantiate the bound from Claim 2.6 at some value ε, we get the following lower
bound on N , the size of the key stores:

log3/4

(ε
k

)
< N. (2.29)

For any deployment of QKD it should be possible to estimate an upper bound on k. For
example k ≤ 264 should suffice in almost all contexts, so that if we want probability ε ≤ 2−40

for key exhaustion, Equation (2.29) states that we should choose N ≥ 251. Tighter bounds
on PN,A(k, 0) can show that fewer keys are required to achieve the same protection against
key exhaustion.

In order to sample d and be able to replenish all ITS keys, the QKD output key kq
should be at least ℓ+ (ℓa + ℓb + 2)λ bits long, where λ is the size of the keys. Accordingly
the block-size for post-processing could be chosen sufficiently large to be able to replenish
all keys. For example if λ = 128, N = 251 and the system is estimated to have an expected
key rate of 0.10 (ratio between the number of qubits exchanged and the length of kq), then
approximately 6.5 · 105 qubits sent in phase one will suffice. Alternatively, a system under
attack can dynamically increase this block-size as ℓ increases (up to N − 1), and/or it
may post-process multiple blocks before starting ITS authentication to ensure that kq is
sufficiently large. We remark that replenishing all ITS keys is required for our proof of
Theorem 2.5, but that proof does not say anything about the security of partially replacing
the ITS keys, which is left as future work.

10The adversary with strategy a = 1 is expected to attack Ω(2N) sessions to achieve key exhaustion,
while strategy a = ℓ is expected to attack Ω((4/3)N) sessions. I omit the calculations of these claims for
brevity.

39

4.2.3 Cost analysis

Note that the mitigation provides a low cost solution in both the number of fresh key bits
that are consumed and in the number of extra messages that need to be sent.

Zero decoy messages are required when the system is not under attack and no keys
have been lost (ℓ = 0). In some QKD protocols the final post-processing messages can be
merged with the first authentication messages (either real or decoy), for example when those
messages are for key confirmation. For these protocols the mitigation has zero overhead
when not under attack.

This also means that no fresh key bits are required for round scheduling when ℓ = 0
and only enough bits for replenishing two ITS keys (one in each direction) are used. The
following theorem shows that even if the system is under attack (ℓ > 0) the number of bits
consumed to sample d is low:

Theorem 2.7. Let c be the number of fresh key bits consumed by the round scheduling of
Section 4.1.1. Then c ≤ ℓ (the number of lost keys) and E[c] < 4.

Proof. We can find the last 1 in the bitstring by inspecting at most ℓ bits, starting from
the end. The upper bound c ≤ ℓ is trivial from the fact that at most ℓ bits are inspected.
Since the bits of kq are independent and unbiased, so that we have expected value

E[c] = ℓ2−ℓ +
ℓ∑

d=1

(ℓ− d+ 1)2d−ℓ

=
ℓ∑

d=0

(ℓ− d)2d−ℓ +
ℓ∑

d=1

2d−ℓ

<

∞∑

d′=0

d′
(
1

2

)d′

+
∞∑

d′=0

(
1

2

)d′

=
1/2

(1− 1/2)2
+

1

1− 1/2

= 4,

(2.30)

where we substituted d′ = ℓ− d.

40

Alice (A) Bob (B)

quantum communication

m1, B.ib, B.ja, B.jb

m2, A.ia, A.ja, A.jb

...
mn−1, T0

mn, T1

Figure 2.5: Sequence diagram of decoy-based key exhaustion mitigation, when ℓ ≤ 1. The
difference is that ITS tags are sent alongside mn−1 and mn instead of afterwards.

4.3 Improvement

An improvement is possible with the decoy-based mitigation when ℓ ≤ 1. Instead of
sending the ITS tags after the last post-processing message, they can be attached to the
last messages, as show in Figure 2.5. T1 is computed over the full transcript, while T0 is
computed over the partial transcript that omits mn. State updates remain the same as in
the default decoy-based mitigation.

Since the sender of T0 computes their ITS tag over all of their own messages in the
transcript, this provides ITS authentication of the entire QKD session to the recipient.
The honest parties might abort upon receiving mn−1 or mn because post-processing failed,
however this does not make the protocol more vulnerable to key exhaustion, since the
proof of Theorem 2.5 already assumes for ℓ ≤ 1 a key can be consumed with certainty.
However when ℓ > 1, the proof assumes that protocol aborts are independent of the post-
processing messages, so the ITS tags should be sent after mn in that case. For specific QKD
protocols, such an improvement could also apply when ℓ > 1. For example, if the sender of
mn knows that it will never trigger a post-processing abort (for example in BB84 [BB84]
mn is just a message confirming that some revealed key bits were correct) then T0 can
always be attached to mn, reducing the total number of messages by one in every session.
The analysis of such improvements are left for future work.

41

5 A ratchet-based mitigation

Another mitigation is provided in Figure 2.6. To prevent the first two key exhaustion
attacks described in Section 3, the entire protocol is executed over a computationally
authenticated channel as specified in Section 7.1. The mitigation updates the keys in
between every session, somewhat reminiscent of the way modern secure messaging protocols
like Off-the-Record Messaging (OTR) [OTR] and Signal [Mar16a] update their keys using
a ratchet. We combine that with careful state management of the ITS values to prevent
desynchronization by messages being dropped. Our mitigation only alters the method for
authenticating the post-processing phase, leaving the messages content of that phase and
other phases unaltered, so that the mitigation applies to all QKD protocols.

5.1 Construction

We abstract away from the details of QKD post-processing: let (m1,m2, . . . ,mn) be the
sequence of n post-processing messages when neither party aborts. In general we assume
that either party may abort after receiving any of these messages, for example if they detect
the quantum communication contained too much noise. However if the protocol accepts
then it outputs shared secret key bits, denoted kq, from which Alice and Bob can then take
sufficiently many bits from that output to replenish two ITS authentication keys.

We require n to be even so that Bob always sends his ITS tag first, and n ≥ 4 (which
can be enforced by dummy messages if necessary). Bob must initialize post-processing by
sending m1. The Alice/Bob roles are fixed in this and all future QKD sessions.

Alice holds the variables (A,A′):

A = (Ka, Kb, Ta, Tb)

A′ = (K ′
a, K

′
b, T

′
a, T

′
b) or ∅.

A consists of two ITS authentication keys, her last sent tag and the last tag she received
from Bob, while variable A′ is either empty (denoted ∅) or holds unconfirmed replacement
values for A. Bob only has the state variable B:

B = (Ka, Kb, Ta, Tb).

The idea of the protocol is that it maintains the invariant that A = B or A′ = B.

42

Alice (A,A′) Bob (B)

quantum communication

m1, B.Tb

if A′.Tb = B.Tb:
A := A′

A′ := ∅
else if A.Tb 6= B.Tb:
abort()

m2, A.Ta

if A.Ta 6= B.Ta:
abort()

m3

...

mn−1

A′.Ta := MAC(A.Ka, t)
A′.Tb := MAC(A.Kb, t)
replenish(A′.Ka, A

′.Kb)
mn

B.Ta := MAC(B.Ka, t)
B.Tb := MAC(B.Kb, t)
replenish(B.Ka, B.Kb)

B.Tb

if A′.Tb 6= B.Tb:
abort()

A := A′

A′ := ∅
A.Ta

if A.Ta 6= B.Ta:
abort()

Figure 2.6: Sequence diagram of ratchet-based QKD key exhaustion mitigation. Classical
messages are transmitted over a computationally authenticated channel. ITS tags Tb and
Ta are computed over the full transcript t = (m1, B.Tb,m2, A.Ta, . . . ,mn).

43

First consider message mn−1: upon receiving it, Alice can complete post-processing and
compute mn. She takes the full protocol transcript11

t = (m1, B.Tb,m2, A.Ta,m3, . . .mn) (2.31)

over which she computes the ITS tags

A′.Ta := MAC(A.Ka, t)

A′.Tb := MAC(A.Kb, t).
(2.32)

She also takes some bits from the shared QKD output kq, preparing the next ITS authen-
tication keys (A′.Ka, A

′.Kb) for replenishing the current keys (A.Ka, A.Kb). Let k′q be the
remaining key bits, which can be used in the next phase of key usage. She stores the values
but must not overwrite any values in A, nor can she send any of the value in A′: she just
sends mn. Upon receiving mn Bob also completes post-processing and computes the new
values of B: he does overwrite the old values. Despite having updated his state he must
not accept yet. He sends B.Tb as ITS authentication of the session and to indicate he has
updated his state. Alice accepts only if A′.Tb = B.Tb, at which point she overwrites her
old state (A := A′) and deletes the temporary state (A′ := ∅). Finally she sends her new
tag (now stored in A.Ta), so that Bob can also accept when receiving A.Ta = B.Ta.

We also attach the ITS tags to the initial messages to ensure Alice and Bob can recover
from any protocol abort. If initially Alice holds on to an incomplete update (A′ ̸= ∅), then
either mn or B.Tb must have dropped in the previous session. Bob sends B.Tb along m1,
which will tell her which one was dropped. If he sends A′.Tb then he must have received
mn and she can complete the previous session by updating (A := A′) and replying with
the new A.Ta. Otherwise Bob sends the old A.Tb which tells Alice that he has not updated
his state, so either mn must have been dropped or Bob aborted. Either way she will reply
with A.Ta alongside m2, confirming to Bob that A = B: they share the required ITS key
material to continue the current session.

If Alice holds A′ ̸= ∅ and Bob sends A.Tb alongside m1, she concludes he must have
not received mn in the previous session, yet she must not delete A′. This prevents key
exhaustion by replay attacks. The computationally authenticated channel protects against
replay attacks, as discussed in section Section 7.1, however in our suggested implementation
it does so by including nonces to ensure freshness of the session. This can only guarantee
that replies are fresh, but Bob’s initial message could be replayed. If Bob holds B.Tb =
A′.Tb while Mallory replays a message (A.Tb,m1), then deleting A′ would desynchronize
Alice and Bob.

11If the protocol uses nonces to prevent replay attacks, the transcript should include the nonces Na and
Nb, so that t = (Nb, B.Tb,m1, Na, A.Ta,m2, . . . ,mn).

44

5.1.1 Initialization

If QKD starts from the assumption that Alice and Bob already share sufficiently many
random secret bits, they could initialize all values (Ka, Kb, Ta, Tb) with random shared
bits. Similarly they could initialize two indices to sample the universal hash function in
both directions and a shared computational authentication key in this way. Sharing Ta and
Tb this way has no cryptographic significance, its purpose is to simplify the implementation
so that no separate instructions or messages are required in the first session.

Instead if Alice and Bob start with each other’s public key (verified, for example by
a public key infrastructure (PKI)), they can bootstrap by using public key signatures to
set up the computationally authenticated channel [SML09]. They initialize Ta and Tb to
some default value to attach to m1 and m2 (this could simply be an empty string), all
other messages remain the same. However initially Alice and Bob do not compute ITS
MACs over the transcripts. Instead, before sending mn, Alice sets A′ (including T ′

a and
T ′
b directly with bits from kq. Similarly Bob sets B completely with bits from kq. If the

protocol aborts before Bob updated B, he resends the default tag alongside m1 in the
next session, signalling to Alice that they still need to bootstrap. Alice and Bob can also
initialize a shared secret key for symmetric computational authentication of future sessions,
which should be more efficient than using public key signatures.

5.2 A balanced variant

We can eliminate the requirement that Bob always has to initialize post-processing, by
allowing either party to hold on to the unconfirmed updated value. This is depicted in
Figure 2.7. The balanced variant requires n ≥ 3.

This variant maintains the invariant that A = B, or A′ = B, or A = B′, so that honest
parties can always recover from aborted sessions. Values from A′ and B′ should never be
sent, instead they must only be used to locally update the state (A := A′ or B := B′) after
the other party confirms they have updated their state. After message m2 is processed,
the protocol ensures that A = B, so the protocol also maintains an invariant that either
A′ = ∅ or B′ = ∅.

Assume Bob replies B.Tb to message mn, but his reply gets dropped and the parties
abort, so that A′ = B. If Alice initiates post-processing, she sends the old A.Ta. Bob
cannot validate this value, but instead replies with B.Tb to let Alice know she should
update. After validating A′.Tb = B.Tb, Alice indeed overwrites A := A′ and sends the new
A.Ta to confirm she has done so. Bob can validate this value. In general, Alice and Bob

45

Alice (A,A′) Bob (B,B′)

quantum communication

m1, A.Ta

if A.Ta = B′.Ta:
B := B′

B′ := ∅m2, B.Tb

if A′.Tb = B.Tb:
A := A′

A′ := ∅
else if A.Tb 6= B.Tb:
abort()

m3, A.Ta

if A.Ta 6= B.Ta:
abort()

m4

...

mn−1

A′.Ta := MAC(A.Ka, t)
A′.Tb := MAC(A.Kb, t)
replenish(A′.Ka, A

′.Kb)
mn

B.Ta := MAC(B.Ka, t)
B.Tb := MAC(B.Kb, t)
replenish(B.Ka, B.Kb)

B.Tb

if A′.Tb 6= B.Tb:
abort()

A := A′

A′ := ∅ A.Ta

if A.Ta 6= B.Ta:
abort()

Figure 2.7: Sequence diagram of the balanced ratchet-based QKD key exhaustion mitiga-
tion. Even though the diagram shows that the number of messages (n) is odd and that
Alice initializes, the parity of n is no longer important and either party can initialize.

46

use the tags attached to messages m1 and m2 to properly update their state, while they
use the tags attached to messages m2 and m3 to validate that they are still synchronized.

6 Mitigation comparison

First we consider some minor advantages that the decoy-based mitigation has over the
ratchet-based one. One advantage is that Alice and Bob (or at least one of them) are
aware when their keys are exhausted, because they will have used their last ITS key. This
means they know exactly when to initiate the recovery ceremony.

In the ratchet-based mitigation, an adversary that can break the computational au-
thentication could get multiple guesses at the same ITS tag, possibly breaking the security
of future sessions without having to compromise the recovery ceremony. That adversary
can impersonate Bob and learns the keys that Alice stores in (A′.Ka, A

′.Kb). Alice cannot
distinguish adversarial guesses for A′.Tb from old replayed messages, so she will simply
ignore these. However, choosing sufficiently large ITS tags ensures that the adversary’s
guesses are correct with negligible probability.

In the decoy-based mitigation each key is only used once, whereas the ratchet-based
mitigation possibly creates multiple tags with the same key. In principle only one such
tag is ever made public, but if multiple tags leak for whatever reason, this could lead to
devastating loss of security.

Another advantage, at least with the improvement of Section 4.3, is that it requires
fewer messages when the system is not under attack. The ratchet-based mitigation always
adds a full round-trip to the post-processing protocol.

Despite these advantages of the decoy-based mitigation, I would recommend the ratchet-
based mitigation in virtually all contexts. First, its state is much smaller so that local state
management is easier, and second, the complexity of the side-channel protection required to
secure the decoy-based mitigation can lead to vulnerabilities in any real-world deployment.
This also means that an implementation of the ratchet-based mitigation will likely be
somewhat faster.

Choosing between the standard ratchet-based mitigation and the balanced variant
of Section 5.2 depends mostly on context. The former has smaller state and is recom-
mended if possible, for example for prepare-and-measure QKD protocols that fix the roles
anyway. The latter can be initiated by either party, so it could be more applicable to sym-
metric QKD protocol, such as entanglement based ones. It also has no parity requirement

47

Alice (A,A′) Bob (B)

quantum communication

m0

m1, B.ib, B.ja, B.jb, B.Tb

m2, A.ia, A.ia, B.jb, A.Ta

...

mn−1

mn

T0

...

Td−1

Td = B.Tb

Td+1 = A.Ta

Figure 2.8: Sequence diagram of combined mitigations. State updates are omitted for
simplicity.

on the number of post-processing messages, so it never needs dummy messages to make n
even.

6.1 Combining the mitigations

The decoy-based mitigation has zero round-trip overhead when the system is not under
attack. However the ratchet-based mitigation can turn out to be cheaper when the system
is under attack, This suggests a method of combining them, where Alice and Bob always
run the decoy-based mitigation but fall back to the ratchet-based mitigation just before
the last key would be consumed. This is depicted in Figure 2.8.

Alice holds A = (ia, ja, ib, jb, Ka, Kb, Ta, Tb), where Ka and Kb contain up to N ITS
keys (as in the decoy-based mitigation), but she also holds A′, while Bob only holds B (as
in the ratchet-based mitigation). Alice and Bob run the decoy-based mitigation, possibly
including the improvement of Section 4.3. However when ℓ = N − 1 and only one key is

48

left, Alice prepares A′ just before sending Td−1: she computes the tags over the current
transcript (A′.Ta := MAC(A.Ka[A.ia], t) and A′.Tb := MAC(A.Kb[B.ib], t)), replenishes
A′.Ka and A′.Kb and accordingly updates the indices in A′. She sends Td−1, so Bob can
overwrite B and then send Td = B.Tb to indicate he has updated his state. Upon receipt,
Alice can overwrite A := A′.

If any message before Td is dropped, no keys are consumed and Alice and Bob can try
again in the next session. If Td is dropped, then A′ = B, so Alice can update her state upon
receiving B.Tb alongside m1 in the next session. If Td+1 is dropped, then A = B and the
keys have already been replenished, which Bob will learn upon receiving A.Ta alongside m2

in the next session. Once Alice holds A′ ̸= ∅, Bob must send B.Tb before she sends A.Ta
in the next session. If Alice initiates post-processing, she can send a dummy m0 message
to request m1 from Bob (m1 itself could also be a dummy message, but Bob’s message
must contain B.Tb). The role of Alice and Bob is fixed by the parity of d in the session
where the last key was used, so if necessary the round scheduling of that session could be
adjusted to fix the parity and thereby the roles.

The security of the combined mitigation follows directly from that of the ratchet-based
one: key exhaustion will only occur when the last key is consumed, and the last key
is protected by the ratchet-based mitigation. Therefore N can be chosen very small, so
that the state that needs to be securely managed is only slightly larger than that of the
ratchet-based mitigation. The idea could also be combined with the balanced variant of
Section 5.2, in which case the dummy message m0 is not required.

7 Security considerations

As with any security system, the protection it can provide in the real world also depends on
the security of its implementation. In this section, we consider some details that are relevant
to this particular problem. Section 7.1 discusses the computational channel, Section 7.2
considers local state management, Section 7.3 shows why parallelism must be avoided and
Section 7.4 considers side-channels.

7.1 Computationally authenticated channel

We have described the protocol by assuming the existence of a computationally authenti-
cated channel. Earlier we argued why such an abstraction might be harmful, but in case
of stateless computational authentication this is acceptable.

49

The computational authentication itself can be achieved by either asymmetric cryp-
tography (signatures)12 or by symmetric cryptography (MAC tags). We require that the
channel not only protects against message forgeries, but also prevents other tampering
such as replay, reflection and typing attacks.

Providing only message authentication on individual messages is insufficient. The stan-
dard cryptographic engineering practice of setting up a secure channel with an ephemeral
session key [FSK10] is not desirable as it requires another cryptographic primitive or pro-
tocol such as a KEX, introducing more computational assumptions.

We suggest the following techniques for realization of the channel: include randomly
generated nonces at the beginning of each session to ensure the session is fresh, number
and/or label individual messages to prevent out-of-order messages and typing attacks,
and compute the message tags/signatures over the partial transcript instead of individual
messages. If the authentication method is only EUF-CMA secure (instead of sEUF-CMA),
then the computational authentication tags/signatures themselves should be omitted from
the (partial) transcript. Note that nonces do not protect against replay attacks of the first
message.

Computational keys can also be exhausted after having been used exponentially many
times. We recommend to use a sufficiently large key instead of updating the computational
keys, to avoid desynchronization issues while updating that key.

7.2 Local state management

QKD post-processing requires maintaining a large state. In this section we only consider
how to manage the persistent state used for ITS authentication. We call other post-
processing state the ephemeral state, which includes values such as qubit measurement
outcomes. If the protocol aborts, then the ephemeral state can be discarded without
leading to key exhaustion or loss of security.

The mitigations essentially describe how Alice and Bob keep their states synchronized.
However this requires secure management of the local state by both Alice and Bob. The
main problem is synchronization of volatile memory with persistent storage: the parties
must ensure that updates to their state are written to persistent storage before sending
the next protocol message. Another problem is that of state cloning, for example due to
virtual machine cloning or system backups, which can lead to key reuse and devastating
loss of security.

12Efficient stateless signatures from minimal assumptions exist [BHK+19].

50

Not much research has gone into secure synchronization in the context of stateful cryp-
tographic protocols, however secure state management is also an issue with stateful HBS
schemes [MKF+16]. Although HBS schemes only require synchronization of the private
key state at one end, the problem is severe enough that the National Institute for Standards
and Technology (NIST) recommends against HBS [CAD+20]:

Stateful hash-based signature schemes [. . .] are not suitable for general use
because their security depends on careful state management.

This indicates that the difficulty of secure state management should not be underestimated,
although several factors make it easier to realize in the context of QKD than it is for HBS:

• QKD requires communication hardware such as single photon sources and detectors.
Adding dedicated cryptographic hardware for state management should be relatively
cheap, allowing safe implementations [MKF+16].

• HBS is a cryptographic primitive that could be deployed for different purposes and
in many different hardware/software environments. QKD is a single protocol which
puts secure state management in a more fixed context.

• QKD has a relatively low key-rate output, so the delay from secure state synchro-
nization is unlikely to be a performance bottleneck.

• With our mitigation, QKD has to manage only a small state. Assuming ITS authen-
tication uses the Wegman-Carter construction of Section 2.2 with λ = 128:

– the decoy-based mitigation (with N = 253 and 128-bit indices i and j) has a
local state of 8160 bytes.

– the local state of the ratchet-based mitigation is 128 bytes for Alice and 64 bytes
for Bob.

For reference, a local state of 1664 bytes is estimated for HBS [MKF+16].

The updates to the state should be atomic, minimizing the probability that a crash
during the update leaves the persistent storage in a corrupted state from which Alice and
Bob cannot recover. If we extend the adversary model to include active side-channels, addi-
tional countermeasures must be taken to prevent desynchronization through side-channels
such as fault attacks during state updates. We consider this outside the scope of our work.

Local state management in the decoy state solution must take extra care to not leak the
sampled number of decoy rounds through a side-channel, as further discussed in Section 7.4.

51

Alice (A,A′) Bob (B)
mn−1

A′ := . . .
mn

B := . . .

B.Tb

Alice (A,A′) Bob (B)

m′n−1

A′ := . . .

m′n

Figure 2.9: Desynchronization of the ratchet-based mitigation under parallel composition
with the same keys, where messages B.Tb and m′

n are dropped.

7.3 Parallelism

In both mitigations, Alice and Bob must prevent parallel composition under the same ITS
keys.13 Running multiple sessions concurrently runs into the problem of shared access to the
secure state, which can lead to desynchronization. Preventing parallelism is not something
that can be enforced by cryptography, but instead must be guaranteed by the executing
system. While we indicate examples of security failures, we consider the mechanisms for
preventing parallelism outside the scope of our work.

The decoy-based mitigation is insecure under parallel composition. If parallel sessions
are allowed, an adversary attempting to learn d in one session can eavesdrop on other
sessions to learn if any keys have been consumed or replenished. For example, assume
Mallory holds a message with tag Tr sent in one session by Bob. If she can trick Bob into
starting another concurrent session, she eavesdrops on his first message to learn B.ib. If
it is incremented compared to what she saw in the first session, she knows that r = d or
r = d + 1. Either way round r is a real authentication message and blocking it results in
at least one key being consumed.

In the ratchet-based mitigation, parallel composition could directly lead to desynchro-
nization. For example when message are timed as in Figure 2.9: Alice will updates A′

twice while Bob only updates B once.
13QKD with parallel composition under different ITS keys is secure, as proven by Portmann and Ren-

ner [PR14].

52

7.4 Side-channel analysis

Standard side-channel protection should suffice in the ratchet-based mitigation. Side-
channel protection of the decoy-based mitigation is non-trivial.

The analysis of the decoy-based mitigation assumes that an adversary has no way
of distinguishing a decoy round from a real round, or learning d in any other way. An
adversary that can accurately predict which message is the real authentication message
can fully exhaust the ITS keys. This information might leak through side-channels in the
round scheduling or in any of the (decoy) authentication rounds. Here we highlight a few
pitfalls where an implementation must ensure that no side-channels exists that leak this
information. We remark that this section only scratches the surface of a proper side-channel
analysis, which should cover the entire implementation and not limit itself the following
discussion. Our countermeasures are only suggestions: other mitigations for the mentioned
side-channels likely exist and even be preferred in some contexts.

In Section 4.1.1 we analyzed the method of sampling of d by scanning the last ℓ bits
in reverse order until finding the last one. However an implementation must sample d in
constant time, for example by always scanning all last ℓ bits. The implementer could also
consider to postpone discarding the used bits of kq until after the real authentication has
been completed, to prevent that the action of discarding itself leaks d.

The ITS tags Tr in decoy messages (when r < d) consist of random bits, so it might
be tempting to sample local random bits directly for the value of Tr. However that would
almost certainly leak that the round is a decoy round through a timing side-channel. This
is the reason why we suggested the alternative implementation in which the sending party
fully computes the ITS tag Tr using a random key Kr. In that implementation the sender
should always sample a random key and select the real or random key in constant time.

Incoming decoy tags should always be validated, even if the recipient knows that the tag
cannot be valid, because they do not know the key that was used. If instead the recipient
ignores decoy tags and immediately sends a reply, then the message Td+1 will be delayed
relative to the previous decoy messages and so reveal to the adversary that Td was a real
message. The adversary can then block Td+1 and successfully consume two keys (one in
each direction).

In fact an eavesdropper should not be able to observe any difference between the pro-
cessing of a real tag and a decoy tag. If the tag recipient only replenishes keys upon
receiving Td, this could leak that Td was real through a side-channel. This is important
even if replenishing keys happens locally after sending Td+1: otherwise the following attack
would consume a key: the adversary holds on to each message Tr before delivering it and

53

then learns through a side-channel if the sender either idles or replenishes keys. In the for-
mer case the adversary concludes that the sender just received a decoy message (r−1 < d)
and otherwise they received a real message (r − 1 = d).

8 Discussion

All QKD protocols that establish ITS key material require some post-processing protocol
over an ITS authenticated channel. All known ITS authentication methods consume (some
of) their key material upon use, which can be exploited by an adversary to exhaust all
key material. This work classifies three ways for an adversary to do so: noise on the
quantum channel, tampering with the classical channel and desynchronization. Up to my
knowledge, all known QKD protocols and implementations are vulnerable to one or more
key exhaustion attacks.

Key exhaustion can be the first step towards an attack on the security of future QKD
sessions, especially if the recovery method is implemented as some automated protocol.
This aspect of the attack sets it apart from other DoS attacks, making key exhaustion an
attack on QKD that is often underestimated. Our mitigations provide protection against
computationally bounded adversaries, without compromising the ITS properties of the
QKD output.

This chapter provides two mitigations that only use ITS authentication after the post-
processing session has been authenticated computationally, avoiding the first two classes
of key exhaustion. To avoid desynchronization, the first mitigation hides when the state is
updated. The second mitigation updates the state in stages before accepting the session,
so that the shared state always has some usable shared key material. Both mitigations
require secure management of only a small state, minimizing the impact of other attacks
on availability that are based on device resource exhaustion.

Both mitigations only prevent key exhaustion by adversaries that cannot break the
computational authentication. Our mitigation leaves open the possibility of key exhaustion
through some side-channel, and real-world systems may break down in unexpected ways.
Therefore some method for recovering from key exhaustion is required in almost every
context. It is recommended that recovery is done with a dedicated ceremony involving
humans, instead of an automated protocol.

Given the impact of key exhaustion as discussed in this chapter and the proposed
mitigation based on computational authentication, I believe it is in order to re-evaluate

54

what the added value of QKD is to real-world cryptography. Mosca, Stebila and Lütken-
haus state [SML09]: “if authentication is unbroken during the first round of QKD, even
if it is only computationally secure, then subsequent rounds of QKD will be information-
theoretically secure.” This statement is true for systems without recovery, if only for the
trivial reason that there are no subsequent rounds after keys are exhausted. At least with
our mitigation, this could only happen when computational authentication is broken. To
reflect upon this dependency of computational cryptography, instead I prefer the following
statement that considers QKD in the context of a key exhaustion attack:

As long as computational authentication is unbroken, quantum key distribution
can provide information theoretically secure key material.

Future research could focus on developing key exhaustion recovery ceremonies for QKD
in different contexts and on assessing the security of the mitigations of this chapter in the
context of side-channel attacks.

55

Chapter 3

Terrorist fraud in quantum distance
bounding

1 Introduction

Distance bounding protocols convince a verifier of both the identity and physical proximity
of a prover [BC93]. These protocols add protection when physical proximity is required,
for example the verifier could be a car that should open as soon as the key fob (the prover)
comes nearby. Distance bounding therefore closes a gap between cryptography and real-
world security: no form of cryptographic authentication can detect relay attacks, where
the adversary achieves meaningful results by simply forwarding messages between honest
parties unaltered. Research on distance bounding has mostly been focussed on the context
of radio-frequency identification (RFID), where undetected wireless relaying is relatively
easy for an adversary. However, the applicability of distance bounding will increase as
more of our physical lives are coming to depend on digital keys.

The protocols that are the most secure operate by timing the delay in a challenge-
response protocol: if the response is quick enough somebody must be nearby, and if the
response is correct that somebody must be the prover. Part of the technical challenge of
realizing distance bounding is the short time the prover has to respond, because of the
high speed at which information can travel. Protocols therefore consist of slow untimed
phases in which cryptographic operations can be performed (such as deriving an ephemeral
key from a shared long-term key and exchanged nonces), and a rapid timed phase for
exchanging individual bits. Standard communication hardware introduces so much delay

56

that the bounds on the distance often becomes meaningless, so that dedicated hardware is
required [RČ10].

Recent work proposed quantum communication in the rapid phase of distance bounding
protocols. These protocols base their security on both computational assumptions in the
slow phase and on quantum information properties such as the no-cloning theorem [WZ82]
in the rapid phase. These protocols have different hardware requirements, which can have
an effect on various properties such as the speed of the response, the cost of implementation,
and the susceptibility to side channel attacks (although at this time, no experimental data
exists).

The first quantum distance bounding protocol I will consider was designed by Abidin,
Marin, Singelée and Preneel (I will refer to it as the AMSP protocol) [AMSP17]. Abidin
later proposed a protocol that improved upon the AMSP protocol by eliminating a final
slow phase [Abi19]. Jannati and Ardeshir-Larijani had earlier proposed the relay attack
detection (RAD) protocol [JA16], but as Abidin observed in 2020 [Abi20] that protocol
does not detect an adversary that relays the qubits without measuring them (for that
reason I will not consider it further). In the same work Abidin proposed the improved
RAD (IRAD) protocol to fix this.

These protocols claim to provide protection against terrorist fraud (TF): an attack
where a far-away dishonest prover colludes with an accomplice that is close to the verifier
in order to convince the verifier that the prover is nearby. The countermeasure uses a
standard technique from classical distance bounding: the long-term key is encrypted using
an ephemeral key. See Section 2.1 for a detailed explanation of this attack and its coun-
termeasure. This countermeasure is effective in classical distance bounding, but it turns
out to be detrimental to the quantum protocols.

In this chapter, I consider three variants of the three quantum distance bounding pro-
tocols, each variant differs in the implementation of the TF countermeasure. The first
variant encrypts the long-term key using a one-time pad, the second variant encrypts the
long-term key using a computational cipher (such as the Advanced Encryption Standard
(AES)), and the third variant entirely omits the TF countermeasure (which can be relevant
in some use cases). For all three protocols, I show that the long-term key is leaked with
the first variant, I show that the second variant is ineffective, and for the third variant I
improve upon the existing analysis: I either show that the suggested attacks are unphysical
or I show that better attacks exist.

57

1.1 Outline

Section 2 gives the background to this chapter. Section 3 gives a brief description of the
quantum distance bounding protocols, based on their similarities. Then we consider the
three protocols in detail: AMSP in Section 4, Abidin’s protocol in Section 5, and IRAD in
Section 6. For each protocol we

(1) describe key-extraction against the proposed TF countermeasure with the one-time
pad;

(2) describe TF against the proposed TF countermeasure with a computational cipher;

(3) improve the security analysis of the protocol without TF resistance.

Section 7 provides a countermeasure that prevents key leakage in the IRAD protocol,
and compares the result with classical distance bounding protocols. Finally Section 8
summarizes the results and concludes by comparing the remaining security of quantum
distance bounding protocols against those of existing classical distance bounding protocols.

2 Background

We consider the required background in this section. The field of distance bounding is
summarized in Section 2.1, while the required theory of quantum information is discussed
in Section 2.2.

2.1 Classical distance bounding

The security guarantees that cryptography can provide may be insufficient to achieve some
desired properties in the real world. Take for example keyless car entry: the car should
only unlock its doors when the corresponding key fob is nearby. If the fob authenticates
itself using a standard cryptographic authentication protocol, then a pair of adversaries
can set up a simple relay-attack: one adversary reads the challenge messages from the
car and relays them unmodified to the other adversary, who presents the challenge to the
key fob in the pocket of the unsuspecting car owner. The response messages by the fob
are relayed back to the car, which is tricked into opening. Other scenarios requiring some
verification of location are e-Passports, (contactless) payments and e-Voting. Some sce-
narios require user-interaction before the authentication protocol is initiated, such as the

58

car owner pressing a button on the key fob, or a credit card owner entering a PIN before
a digital payment. In such cases a successful attack will require extra effort, for exam-
ple through social engineering, but protection against relay attacks remains important.
As society moves towards ubiquitous computing and more of our lives becomes digitally
connected, I believe that proper distance bounding will become increasingly important.

Distance bounding protocols protect against such relay attacks (and against more com-
plex attacks). In distance bounding protocols a prover attempts to convince a verifier of
both their identity and their proximity to the verifier. These protocols are most commonly
used in RFID settings, but the applications for establishing proximity apply in a much
broader context.1

For consistency I follow the terminology and conventions from [ALM11] in this section.
For example the corresponding parties are called the verifier and prover, although in the
context of RFID they are often called the reader and the tag.

2.1.1 Security requirements

Distance bounding protocols are a variant of pure authentication protocols. These protocols
provide the guarantee that if the verifier accepts and completes a protocol session, then
they know that the intended prover has participated in the same session.

Take for example the MAP1.1 protocol [GJZ01], displayed in Figure 3.1 (this is a
pure authentication protocol, not a distance bounding protocol). When Alice accepts,
after receiving the second message containing the message authentication code (MAC),
she knows that Bob has participated in a MAP1.1 session (up to that second message)
that agrees on the nonces Na and Nb.2 Since different sessions are distinguished by having
different nonces, the requirement that Alice and Bob participated in the same session means
that nonces should be unique. When nonces are sampled uniformly from a sufficiently large
space, the probability of collisions is indeed negligible. The requirement that the other
party is the intended party follows from the assumption that the long-term shared key k
is not leaked to a third party.

An attack that breaks this authentication requirement is called impersonation fraud.
The scenario is displayed in Figure 3.2: the adversary (who may be arbitrarily close to

1Wireless/contactless communication protocols are more susceptible to relaying in practice, but in
theory wired communication is just as vulnerable and may require similar countermeasures.

2The MAP1.1 protocol also achieves mutual authentication: when Bob accepts he is guaranteed that
Alice completed a MAP1.1 session with nonces Na and Nb. Mutual authentication is (usually) not required
in distance bounding.

59

Alice (k) Bob (k)

ida, Na

idb, Nb,MACk(ida, idb, Na, Nb)

MACk(Nb)

Figure 3.1: MAP1.1 pure authentication protocol [GJZ01]. Alice and Bob share a key k,
they have identities ida and idb and they generate random nonces Na, Nb.

Verifier Adversary Prover

Figure 3.2: Impersonation fraud

the verifier) attempts to make the verifier accept without having an honest prover par-
ticipate in the same session. The adversary is allowed to eavesdrop on (and even tamper
with) other sessions between honest parties. It should be noted that much of the existing
literature leaves this security requirement implicit, and only evaluates the security of dis-
tance bounding protocols by considering its resistance against the other types of fraud (as
explained below).

The other guarantee that the verifier wants from a distance bounding protocol is that
the intended prover was within proximity of the verifier while participating in the same
session.

Distance bounding based on time-of-flight is widely regarded as being the most secure
(see Section 2.1.4 for alternative techniques). The main idea is that the verifier measures
the time (∆t) between sending a challenge and receiving the response. Since information
cannot travel faster than the speed of light (c), the verifier learns that the responder can
not have been further than (c · ∆t)/2, where we divide by two because a message must
go back and forth. Stated more practically: if the verifier requires the intended prover to
be within distance D, they require the (correct) response to arrive within time 2D/c. To
prevent an early-reply strategy (where the prover sends the response before having received
the challenge) the challenge must be unpredictable and the response must depend on the
challenge.

Theoretically, distance bounding can be achieved by measuring time-of-flight on any
pure authentication protocol. For example, the verifier could run MAP1.1 as Alice and
measure the time until receiving Bob’s first message. However this is much too slow in
practice, because some slack time (ts) must be allowed for a legitimate prover to compute

60

the correct response, so that the response must arrive in time τ = 2D/c+ ts. For example,
a single clock cycle on a typical smartcard (assuming a clock speed of 10MHz) increases
the distance by about 15 metres, due to the high speed of light (c ≈ 300,000 km s−1).

To prevent the slack time from dominating the total response time, distance bound-
ing protocols are split into a slow setup phase for doing cryptographic operations, and a
timed rapid phase consisting only of very simple operations for the prover. Sometimes
the protocol is concluded by another slow phase, which is called the authentication phase.
For example, in the rapid phase the verifier sends a challenge bit that selects one out of
two prepared response bits. Of course this rapid phase should be repeated many times to
prevent an adversary from always guessing the correct response. Even in such a simple
challenge/response protocol, the latency introduced by signal processing (such as analog-
to-digital conversion and error correction) can often introduce too much slack time.3 In
order to eliminate such overhead, some distance-bounding protocols have been designed
that operate purely in the analog domain [RČ10]. A potential problem with those protocols
is that they have to deal with analog attacks on the system, similar to how quantum hack-
ing poses a threat to quantum cryptography. Indeed, subsequent work has demonstrated
how a “double read-out” attack leads to key extraction, (as the name suggests, the attack
reads out both response registers prepared by the prover) [RTŠ+12]. The same work also
provides a countermeasure.

To assess whether a distance bounding protocol provides the proximity guarantee, one
usually considers its resistance against the following four types of attacks (or frauds).

Verifier //
Prover

(Dishonest)

Figure 3.3: Distance fraud (DF)

Figure 3.3 depicts distance fraud (DF) [BC93], where the dishonest prover attempts to
convince the verifier that they are close, while actually they are far away.

Verifier Adversary // Prover

Figure 3.4: Mafia fraud (MF)
3Lack of error correction also means that real-world distance bounding protocols have to deal with noise

in the rapid phase. This is usually dealt with by allowing some fixed number of errors (of any kind) in the
rapid phase. This does not significantly alter the protocol, but complicates the analysis beyond what is
necessary in this chapter.

61

Mafia fraud (MF) is depicted in Figure 3.4. In MF, the adversary is close to the
verifier and the prover is far away. The adversary relays messages (possibly altering them
or injecting their own) between the honest parties in order to convince the verifier that
the prover is nearby. In most contexts, MF is the most important attack to protect
against. The first description of a relay attack was given by Conway [Con76], where he
described the chess grandmaster problem: an amateur player simultaneously challenges
two grandmasters, playing one as black and the other as white. The amateur then plays
the moves from one master against the other, effectively guaranteeing to win one match or
draw both matches: either way an impressive result for an amateur.

The resistance against MF is often analyzed by considering two adversary strategies,
depending on which party the adversary completes a rapid exchange first. In the pre-ask
strategy the adversary completes a rapid phase with the prover first, while in the post-ask
strategy the adversary first completes it with the verifier. The latter strategy usually only
applies to protocols that have a final authentication phase.

Verifier Accomplice //
Prover

(Dishonest)

Figure 3.5: Terrorist fraud (TF)

In terrorist fraud (TF) [BBD+91] (shown in Figure 3.5) a far-away dishonest prover
assists a nearby adversary (called the accomplice) in order to convince the verifier that the
prover is actually nearby. This would be trivial if the prover could just give their long-term
secret k to the accomplice, so that is not allowed in this fraud. TF resistance means that
any successful attack reduces to the trivial attack.

Preventing TF is not always meaningful. The prover can simply leak the long-term key
k to the accomplice if they trust the accomplice to discard the key afterwards or if they
simply do not care about leaking the key. In the context of keyless car entry, being able to
provide others one-time access to your car seems more like a feature than a bug, suggesting
that TF should be allowed in that scenario. On the other hand if the protocol provides
access to a secure location, preventing TF prevents the dishonest prover from setting up a
business model for providing illegitimate access for a price, since giving access once leaks
the key and allows indefinite access. Another relevant scenario where TF prevention is
relevant is when the dishonest prover wants to create an alibi regarding their whereabouts
while committing a crime elsewhere [DGB87]. Since some contexts do require TF resistance
and others do not, it makes sense to analyze distance bounding protocols both with and
without countermeasures against TF.

62

Prover Verifier // Prover (Dishonest)

Figure 3.6: Distance hijacking

In distance hijacking, depicted in Figure 3.6, a remote adversary attempts to take over
a session between honest participants [CRSČ12]. This attack is possible when the slow
and rapid phases of a distance bounding protocol are not coupled securely. The remote
dishonest prover first lets an honest prover complete the rapid phase, then hijacks the
session to convince the verifier in the final slow phase that they just completed the rapid
phase. I do not consider distance hijacking in this chapter since none of the original
proposals claim security against it.

2.1.2 Swiss-Knife protocol

In order to explain the existing classical countermeasures against the above frauds, I briefly
describe an existing classical distance bounding protocol: the Swiss-Knife protocol. I
chose this protocol because it is structurally very similar to the existing quantum distance
bounding protocols. The full Swiss-Knife protocol has other advantages such as mutual
authentication, fault tolerance against noise, prover privacy, and an option for improved
efficiency. I focus on a simplified version of the basic protocol to streamline the explanation.

Brands and Chaum introduced the first protocol based on time-of-flight [BC93] which
is the foundation for modern distance bounding protocols. Hancke and Kuhn designed a
protocol for the RFID setting, relying only on symmetric primitives [HK05]. Bussard and
Bagga introduced the main idea for resisting TF [BB05], which was then realized using only
symmetric primitives by Reid, González Nieto, Tang and Senadji [RGTS07]. That specific
protocol turned out to be vulnerable to a key extraction attack, which was patched in the
Swiss-Knife protocol [KAK+08]. See also the 2018 survey [ABB+18] for a comprehensive
overview and comparison of existing distance bounding protocols.

In the Swiss-Knife protocol, shown in Figure 3.7, the verifier and prover share a secret
k. The protocol consists of three phases. In the setup phase they exchange nonces Nv and
Np and establish two shared n-bit registers: d := gk(Np), where gk is a PRF, and b := d⊕k.
Denote c = c1 . . . cn for the n-bit string, similarly for other variables. In the rapid phase the
verifier sequentially sends challenge bits ci. The prover has prepared two response registers:
di and bi. Depending on the received challenge the prover selects the correct response bit ri.
The verifier measures the time (∆ti) between sending ci and receiving ri. I distinguish the
sent values (ci, ri) from the received values (c′i, r′i), which helps in describing attacks where

63

Verifier (k) Prover (k)

Nv
$← random nonce Np

$← random nonce
Nv

Np
d := gk(Np)
b := d⊕ k
c

$← {0, 1}n

d := gk(Np)
b := d⊕ k

ci

ri :=

{
di if c′i = 0

bi if c′i = 1
ri

time ∆ti

Repeat
n times

c′,MACk(idp, Nv, Np, c
′)

Accept iff
MAC is valid, and c = c′, and
r′ correct, and ∀i : ∆ti < τ

Figure 3.7: A simplified version of the basic Swiss-Knife distance bounding proto-
col [KAK+08]. The verifier and prover share a long-term key k. They first exchange
nonces Nv and Np, then compute ephemeral keys d (using a PRF gk) and b. In the rapid
phase the verifier sends n challenge bits ci (received as c′i) and the prover replies with ri
(received as r′i). In the authentication phase the prover sends a MAC over their identity
idp, the nonces and the received challenges c′.

64

the adversary tampers with these values. In the authentication phase the prover sends all
received challenges c′ = c′1 . . . c

′
n and an authentication tag MACk(idp, Nv, Np, c

′), where
idp is the prover identity.4 The verifier accepts only if the MAC is valid, and all received
challenges are correct (c = c′), and every response was correct (ri = (1 − ci)di + cibi),
and every response was given in time (∆ti < τ). The setup and authentication phases are
untimed, providing the adversary with sufficient time to relay messages to far-away parties.
However, the rapid phase is timed and must be executed locally.

The Swiss-Knife protocol essentially adds a rapid exchange phase to the MAP1.1 proto-
col [GJZ01], so the security against impersonation fraud follows directly from the security
of MAP1.1.

The response ri is independent of c′i when di = bi, and the correct response can be
sent early, while the remaining responses have to be guessed. Distance fraud (DF) thus
succeeds with probability (1/2)HD(d,b) = (1/2)HW(k), where HD is Hamming distance and
HW is Hamming weight. Since k is fixed and uniformly random by assumption, this is
usually expressed as (3/4)n, which takes the probability over both the early-reply guesses
and the random bits of k.

Next consider MF: for a successful pre-ask strategy the adversary has to guess all
challenges correctly in order to get the prover to send the correct MAC in the authentication
phase (and then the adversary can also relay all responses to the verifier). With the post-
ask strategy, the prover has to guess the correct responses to the verifier, (but can then
relay the challenges to the prover to get the correct MAC). Either strategy succeeds with
probability (1/2)n.

The protocol protects against TF using the standard countermeasure: the response
register b is an encryption (specifically: a one-time pad) of the long term key k using the
other response register d as the key: b := d⊕ k. More generally, any symmetric encryption
algorithm would suffice: b := Encd(k). The adversary can share either d or b without
leaking k, so that in a post-ask strategy the accomplice has to guess approximately half
the responses when interacting with the verifier. Alternatively the prover engages in DF
while the accomplice is close to the verifier. Either strategy succeeds with probability
(3/4)n. Sharing both d and b with the accomplice (which would let them successfully
complete the exchange phase) would reveal k.

The dishonest prover might decide to leak both bits di and bi for a few values of i. This
will increase the probability that TF succeeds, but it also leaks partial information on the

4Note that idp is never sent in plaintext, adding privacy to the protocol. It is assumed that the verifier
can search a database of all provers to find a pair (idp, k) such that the MAC is valid, thereby learning
which prover they just interacted with.

65

long term key k. The security argument becomes slightly more involved and is summarized
as follows: if the dishonest prover leaks enough bits to make the success probability of TF
unacceptably high, then they also leak enough information for the accomplice to extract k
by a brute-force attack.

2.1.3 Provable security

The above listing of security requirements is rather informal. The lack of formal security
definitions is unsatisfying for both the cryptanalyst that has no clear targets to aim for, but
also for a system designer that is left with uncertainty about the guarantees the protocol
provides. The main reason is that there is no consensus in the academic community about
the proper formalization of the field, let alone the proper formalization in the context
of quantum protocols and/or adversaries. With a lack of consensus, much research on
distance bounding is conducted in the informal framework as described above, including
the original proposals for quantum distance bounding and this chapter itself.

There are many existing formal models [DFKO11; FO13; Vau13; BV15; BMV15], which
vary mainly in their security definitions that capture the various frauds and in their for-
malization of time-of-flight in communication. The 2018 survey paper [ABB+18] gives an
overview of the debate for the interested reader.

The formalization of TF is the cause of much debate. The accepted informal inter-
pretation is that any TF attack should reduce to the trivial attack where the dishonest
prover gives the key to the accomplice (or more generally: any TF attack also allows the
accomplice to fool the verifier in subsequent sessions) but formalizations of that statement
vary significantly. In the SimTF definition of TF [DFKO11], the accomplice first interacts
with the dishonest prover and gets the verifier to accept with probability pA. Then a
simulator is given the accomplice’s view (protocol transcript and random coins) and has
to authenticate without prover assistance, succeeding with probability pS. To prove that
a protocol is TF resistant, one has to prove that pA is at most negligibly larger than pS
(which shows that the dishonest prover can only assist trivially). Other definitions, such
as GameTF [FO13] and collusion-fraud [BMV15], instead allow the accomplice to act ma-
liciously in order to extract information from the dishonest prover (without also having
to make the verifier accept in the same session) and to increase the success probability
of subsequent MF. Few protocols meet the strongest security definitions, although few of
the demonstrated vulnerabilities in these strong models lead to practical attacks. Two
interpretations of such a result are possible: either the protocol is insecure, but is currently
unclear how the vulnerability can be exploited, or the security definition (or the model) is
too strong.

66

With respect to quantum adversaries, it is not immediately clear which models (if
any) properly capture the adversary’s capabilities. A potential vulnerability comes from
non-local strategies by adversaries that share entangled qubits. For example, results in
the Boureanu, Mitrokotsa, Vaudenay model require that rapid responses are locally com-
puted by nearby parties [BMV15, Lemma 1], which does not accurately model quantum
adversaries.

Despite this lack of formalization, one note about the adversary model is in order: it is
assumed that the adversary learns the accept/reject outcome bit of the protocol. To use
the terminology of [ALM11], in this work we measure security against the result-adversary
(res-adv). The blind-adversary (bd-adv: an adversary that cannot see the protocol
outcome) is considered too weak for most real-world scenarios: for example it is trivial
to see if a door opens. On the other hand, the round-adversary (rd-adv: an adversary
that can see the accept/reject outcome of every rapid round) is considered too strong: we
assume the protocol always concludes the full protocol before accepting/rejecting (no early
aborts) and is implemented with sufficient side-channel protection to ensure information
on individual rounds does not leak to the adversary.

2.1.4 Alternatives to time-of-flight distance bounding

Few real-world systems use time-of-flight distance bounding to establish the distance
between communicating parties. Automatic vehicle location systems often rely on self-
reported Global Navigation Satellite System (GNSS) coordinates, Wi-Fi positioning sys-
tems rely on measuring signal properties such as its strength. A notable exception is
Wi-Fi Round Trip Time, which does measure time-of-flight, but uses self-reported times-
tamps to correct for slack time. Contactless payment systems offer no protection against
MF [AT17], instead banks limit the maximum transfer amount and reimburse small thefts.
Remote keyless systems often deploy rolling codes to prevent replay attacks, but usually
have no protection against relay attacks.

Self-reported data is trivially spoofed to achieve DF, so it is insufficient in malicious set-
tings. Signal strength (and other signal properties) can also spoofed, even by the adversary
in the setting of MF. For example the Digital Key standard (on which the recent Apple
feature Car Keys is built), lets you unlock and start your vehicle from your phone, by
executing an authentication protocol over near-field communication (NFC). The standard
claims: “The limited operational range of NFC prevents attackers from tricking the vehicle
into thinking that your mobile device is nearby when it’s not,” [Con20] despite the fact
that this is known to be false, as has been experimentally demonstrated [KCP07; Han11].

67

An often suggested countermeasure against relay attacks is to keep devices physically
isolated, for example by using a Faraday cage or RFID blocking wallets. Such countermea-
sures, if at all practical, might be easily bypassed by some social engineering.

2.1.5 Position based cryptography

Although they are closely related, one should not confuse distance bounding with position
based cryptography [CGMO09]. Both provide an interactive proof system based on the
physical location of the prover and are based on measuring the time it takes for information
to travel between two points, but they operate in different models. In distance bounding,
the identity of the prover is a combination of their secret key and their physical distance to
the verifier. Position based cryptography removes the secret key from the prover identity,
so that only the physical location of the prover constitutes their identity. It also allows
for multiple verifiers so that the physical location of the prover can be pinpointed through
triangulation.

Position based cryptography can be better for modelling scenarios where collusion at-
tacks are likely: the malicious prover may be colluding arbitrarily with their accomplices to
try and convince the verifiers that there is somebody at the location in question, while in
reality there is nobody there. Distance bounding protocols are insecure if deployed in this
model: if the dishonest prover is allowed to share their secret key with their accomplice,
there is no (cryptographic) way to distinguish the original prover from their accomplice.
Note however that the scenario of Figure 3.5 does not constitute a legitimate attack against
position based cryptography, because there is somebody (namely the accomplice) at the
physical location that is being verified.

2.1.6 A note on terminology

The name mafia fraud was coined in response to a New York Times article about zero-
knowledge proofs deployed on smartcards. In the article Shamir explains about an appli-
cation where a credit card holder proves their identity in zero-knowledge instead of giving
their card number to the merchant. He is quoted: “I can go to a Mafia-owned store a million
successive times and they still will not be able to misrepresent themselves as me” [Gle87].
Desmedt, Goutier and Bengio responded [DGB87] by describing a scenario where an un-
suspecting guest eats in a mafia-owned restaurant, while another mobster impersonates
the guest to a jeweller. When the guest initiates the payment for the meal, the mobster
initiates a payment for a diamond. The mobsters covertly relay the entire authentication

68

protocol between the jeweller and the guest, who has unknowingly just bought a diamond
instead of a meal.

Sometimes the term relay attack is used when MF is meant, but a relay attacks generally
only consider adversaries that relay messages unaltered, so MF is more general.

The name terrorist fraud was coined in 1991 [BBD+91]. The authors describe a scenario
at a border crossing: the dishonest prover helps an accomplice to impersonate them to
the customs officer (the verifier), in order to let the accomplice enter the country. The
authors state: “We call this fraud the TF because its consequences could be disastrous
if [the accomplice] were a terrorist.” My criticism is that every attack could have very
bad consequences if the attacker is a terrorist, but more importantly the scenario does
not provide the prover with an incentive for assisting the accomplice, thereby missing the
critical feature distinguishing the attack from MF.

Both the terms mafia fraud and terrorist fraud are non-descriptive and unnecessarily
restrictive with regards to the contexts to which it applies. The terms stuck in the cryp-
tographic literature, likely due to the high marketing value, so for that reason I will stick
to the terminology as well.

2.2 Quantum information

In this section, I provide an overview of the framework for quantum information, but only
just enough for understanding this chapter. There are excellent resources [KLM07; NC10;
Wat18] giving far more complete descriptions.

2.2.1 Constructive

The constructions in this chapter only use pure states, which are commonly described with
Dirac’s bra-ket notation. The following summary is based on the book by Kaye, Laflamme
and Mosca [KLM07].

States The state of a binary quantum system, a qubit, is described by a complex
2-dimensional unit vector |ϕ⟩, denoted as

|ϕ⟩ = α|0⟩+ β|1⟩ =
(
α
β

)
, (3.1)

69

with respect to the computational basis {|0⟩, |1⟩} =
{(

1
0

)
,

(
0
1

)}
. The values α and β

are called the amplitudes. Although generally amplitudes can be complex, in this chapter
they are always real values.

Composed systems live in the tensor product space: the joint system of qubits |ϕ0⟩ =
(α0|0⟩+ β0|1⟩) and |ϕ1⟩ = (α1|0⟩+ β1|1⟩) is

|ϕ0⟩ ⊗ |ϕ1⟩ =

α0α1

α0β1
β0α1

β0β1

 , (3.2)

often abbreviated as |ϕ0⟩|ϕ1⟩ or even |ϕ0ϕ1⟩. If a composite system cannot be expressed in
product form it is called entangled.

Gates A quantum gate is a unitary operation on quantum states, I list a few relevant
examples. The X gate flips qubits (X|0⟩ = |1⟩ and X|1⟩ = |0⟩) and is also called the NOT
gate. The Z gate only flips the phase of the 1-qubit: Z|0⟩ = |0⟩ and Z|1⟩ = −|1⟩. The
Hadamard gate H operates as follows on the computational basis: H|0⟩ = (|0⟩+ |1⟩)/

√
2 =

|+⟩ and H|1⟩ = (|0⟩ − |1⟩)/
√
2 = |−⟩, denoted as

H ≡ H ≡ 1√
2

(
1 1
1 −1

)
(3.3)

in circuit- and matrix representation, respectively. Horizontal lines in circuit diagrams de-
note qubits, with time flowing left-to-right, applying the gates in order. Double lines rep-
resent classical bits. Note that H is self-inverse: H = H−1. The resulting basis {|+⟩, |−⟩}
is called the Hadamard basis.

An example of a two-qubit gate is the Controlled-NOT gate:

CNOT ≡ ≡

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3.4)

If the first qubit has state |0⟩, the gate does not affect the second qubit, but if the state
is |1⟩, the gate flips the second qubit. Therefore the first qubit is sometimes called the

70

control qubit and the second the target qubit. The following identity will be useful:

H H

H H

= (3.5)

stating that the control and target are flipped in the Hadamard basis.

Measurements Amplitudes are not directly observable, but can instead be inter-
preted as a generalization of probabilities with respect to a measurement. A Von Neumann
measurement with respect to orthonormal basis {|ψi⟩} on a state |ϕ⟩ =∑i αi|ψi⟩ outputs
label i with probability |αi|2 and leaves the system in a state |ψi⟩. Let ⟨ψ| denote the dual
vector of |ψ⟩: defined as the action ⟨ψ| : |ϕ⟩ 7→ ⟨ψ|ϕ⟩, where ⟨ψ|ϕ⟩ ∈ C denotes the inner
product. In matrix representation we write ⟨ψ| =

(
α∗ β∗), where c∗ denotes the complex

conjugate. A Von Neumann measurement thus outputs i with probability |⟨ψi|ϕ⟩|2. In this
chapter, when I write i := measure(|ϕ⟩) this should be understood as a measurement of
qubit |ϕ⟩ in the computational basis with output label i ∈ {0, 1}.

It is also possible to do a partial measurement. Given a state |ϕ⟩ = ∑
i αi|ψi⟩|γi⟩,

where {|ψi⟩} is an orthonormal basis, we can measure the first subsystem to get outcome
i, leaving the system in state |ψi⟩|γi⟩.

2.2.2 Analytic

In order to analyze the constructions in this chapter, a generalization of the above frame-
work is required. The following summary is based on the book by Watrous [Wat18], with
the exception that it uses the bra-ket notation to highlight the connection with the con-
structive notation.

Mathematical background Given complex Euclidean spaces X and Y , the set of
linear operators A : X → Y is denoted L(X ,Y). We use the shorthand notation L(X) =
L(X ,X). The identity operator IX ∈ L(X) is the operator defined as IXu = u for all
u ∈ X . An operator A has a unique adjoint operator A∗ ∈ L(Y ,X), defined as the
operator satisfying ⟨v,Au⟩ = ⟨A∗v, u⟩ for all u ∈ X and v ∈ Y . Operators A ∈ L(X) that
are self-adjoint (A = A∗) are called Hermitian, denoted Herm(X). Hermitian operators
with non-negative eigenvalues are called positive semidefinite, denoted Pos(X). Density
operators are positive semidefinite operators with trace one, denoted D(X).

71

The trace of an operator is the sum of its diagonal entries, denoted Tr(A). This allows
us to define an inner product on operators as ⟨A,B⟩ = Tr(A∗B) for all A,B ∈ L(X ,Y).

An important norm in the context of quantum information is the trace norm, defined
as

∥A∥1 = Tr
(√

A∗A
)
. (3.6)

The trace distance of operators ρ0, ρ1 ∈ D(X) is defined as ∥ρ0 − ρ1∥1 and provides a
meaningful notion of how close the two operators are. One identity that is particularly
useful in this chapter is

∥p|ϕ⟩⟨ϕ| − q|ψ⟩⟨ψ|∥1 =
√

(p+ q)2 − 4pq|⟨ϕ|ψ⟩|2, (3.7)

where p, q are non-negative real numbers and |ϕ⟩, |ψ⟩ are unit vectors.

States So far we only considered pure states, which can be described by a unit vector.
Density operators allow us to model quantum states about which we have some uncertainty,
as some kind of probability distribution over a finite set of quantum states. The density
operator of a pure state |ϕ⟩ is defined as ρ = |ϕ⟩⟨ϕ|.

Consider a mixture of pure states

{(|ϕ1⟩, p1), . . . , (|ϕn⟩, pn)}, (3.8)

meaning that the quantum system is in state |ϕi⟩ with probability pi. The density operator
for this system is given by

ρ =
n∑

i=1

pi|ϕn⟩⟨ϕn| (3.9)

and provides all observable properties of the quantum system. Note that this means that
different mixtures can actually describe the same state.

The concept of mixed states is formalized as an ensemble of states. An ensemble is
a function η : {1, . . . , n} → Pos(X), under the constraint that Tr (

∑
i η(i)) = 1. The

operator η(i) encodes both the state and its probability: with probability Tr(η(i)) the
state is η(i)/Tr(η(i)). An ensemble is not necessarily restricted to mixtures of pure states,
although every density operator can be expressed as such.

72

Channels Quantum gates capture only unitary operators, but in general operations
allowed on quantum states are given by quantum channels. which also captures the pos-
sibility to prepare quantum states and discard registers. We consider linear maps of the
form Φ : L(X)→ L(Y), sometimes called superoperators. The set of all such linear maps is
denoted T(X ,Y). The identity map IL(X) ∈ T(X ,X) is the map defined as IL(X)(X) = X
for all X ∈ X .

Quantum channels are the subset of completely positive and trace preserving maps. A
map Φ ∈ T(X ,Y) is

1. positive if Φ(P) ∈ Pos(Y) for every P ∈ Pos(X);

2. completely positive if Φ⊗ IL(Z) is a positive map for every Euclidean space Z; and

3. trace-preserving if Tr(Φ(X)) = Tr(X) for every X ∈ L(X).

The requirements on quantum channels essentially state that they must map density op-
erators to density operators, even when applied to a subsystem of a larger system.

The act of discarding a register is given by the partial trace TrX ∈ T (X ⊗Y ,Y), which
denotes the unique map satisfying (Tr⊗IL(Y))(X ⊗ Y) = Tr(X)Y for all X ∈ X , Y ∈ Y .

Measurements A measurement is a function µ : {1, . . . , n} → Pos(X) satisfying the
constraint

∑
i µ(i) = IX . The terms µ(i) are called the measurement operators. When

a state ρ ∈ D(X) is measured with µ the probability of outcome i is ⟨µ(i), ρ⟩ for every
1 ≤ i ≤ n.

This description of a measurement is destructive, which is not directly compatible with
the Von Neumann measurements given earlier. However any nondestructive measurement
can be emulated by composing destructive measurements with quantum channels, which
allows subsequent initialization of state µ(i)/⟨µ(i), ρ⟩.

2.2.3 Optimal measurements

Consider the scenario where a challenger samples i according to some classical probability
distribution, then prepares a quantum state ρi and gives it to the adversary. The goal of
the adversary, who knows the classical probability function and all possible states ρi, is to
guess i from the received ρi. In other words, the goal of the adversary is to find an optimal
measurement to distinguish the quantum states of a known ensemble.

73

Bipartite systems When given a ensemble of two quantum states, the following
theorem gives an exact quantity how well the states can be distinguished.

Theorem 3.1 (Holevo-Helstrom [Hel67; Hol72]). Let ρ0, ρ1 ∈ D(X) be density operators,
and 0 ≤ p ≤ 1. For every measurement µ : {0, 1} → Pos(X), it holds that

p⟨µ(0), ρ0⟩+ (1− p)⟨µ(1), ρ1⟩ ≤
1

2
+

1

2
∥pρ0 − (1− p)ρ1∥1. (3.10)

A measurement exists that achieves equality.

In the specific case with p = 1/2 and pure states ρ0 = |ϕ⟩⟨ϕ| and ρ1 = |ψ⟩⟨ψ|, we
can instantiate the theorem with Equation (3.7) to get optimal distinguishing value 1/2 +
1/2(

√
1− |⟨ϕ|ψ⟩|2).

Semidefinite programs No closed-form expression is known for the optimal proba-
bility of distinguishing arbitrary ensembles with more than two quantum states (let alone
finding the measurement achieving this optimum). However, the optimal measurement is
naturally associated with a semidefinite program (SDP) [Wat18, Scenario 3.8].

Formally, an affine SDP is a triple (Φ, A,B), where Φ ∈ T(X ,Y) is a Hermitian-
preserving map, and where A ∈ Herm(X) andB ∈ Herm(Y) are Hermitian operators.5 The
associated (primal) problem is to maximize ⟨A,X⟩, subject to Φ(X) = B and X ∈ Pos(X).
6

In order to distinguish an ensemble η we want to find maxµ
∑

i⟨µ(i), η(i)⟩, subject to the
fact that µ must be a measurement. This is indeed an SDP, formally expressed as the triple
(Φ, A,B) = (TrX ,

∑
i|i⟩⟨i|⊗η(i), IY), where the feasible solutions X ∈ Pos(X ⊗Y). Indeed,

any measurement µ can be transformed into feasible solutionX =
∑

i|i⟩⟨i|⊗µ(i), and in the
other direction any feasible X gives the measurement operators µ(i) = (⟨i|⊗IY)X(|i⟩⊗IX).
One can check that these transformations do not affect the objective value ⟨A,X⟩ =∑

i⟨µ(i), η(i)⟩.

Product rule Given two SDPs (Φ1, A1, B1) and (Φ2, A2, B2), the product instance is
defined as (Φ1 ⊗ Φ2, A1 ⊗ A2, B1 ⊗ B2). An affine SDP is said to obey the product rule if
the optimal value of the product instance is the product of optimal values of each instance:
maxX⟨A1 ⊗ A2, X⟩ = (maxX1⟨A1, X1⟩) (maxX2⟨A2, X2⟩). In general this does not hold,

5More general notions of SDPs allow for inequality constraints.
6The associated dual problem is important, but not relevant for this brief description.

74

the optimal value of the product instance might be larger. However, Mittal and Szegedy
prove [MS07, Theorem 1] that a sufficient condition for the product rule is that both A1

and A2 are positive semidefinite.

In case of distinguishing product states of an ensemble, the product rule does hold. We
call the resulting measurement that measures each register separately a product measure-
ment. Given two ensembles η1 and η2, the SDP operators are A1 =

∑
i|i⟩⟨i| ⊗ η1(i) and

A2 =
∑

j|j⟩⟨j| ⊗ η2(j), which are both positive semidefinite since ensemble operators are
positive semidefinite.

Since the tensor product A1⊗A2 is itself positive semidefinite, we can apply the product
rule to the result, iteratively applying it many times. Say that we can distinguish the
states from an ensemble η with optimum value p = maxµ

∑
i⟨µ(i), η(i)⟩. If we receive n

independent samples from η, the best we can do is a product measurement with optimal
value pn.

3 Quantum distance bounding

In this chapter I consider three quantum distance bounding protocols: the AMSP pro-
tocol [AMSP17], Abidin’s protocol [Abi19] and the IRAD protocol [Abi20]. Up to my
knowledge these are the only quantum distance bounding protocols. Each protocol fol-
lows the same structure (compare Figures 3.8, 3.11 and 3.13), not unlike existing classical
distance bounding protocols. I give a high-level overview before analysing each in detail.

The prover and verifier share a long-term key k. In an initial phase the verifier and
prover exchange nonces Nv and Np to establish shared bitstring a, using a keyed function
f :

a = fk(Nv, Np), (3.11)

where f is defined below. This is followed by a timed phase called the rapid bit exchange
phase. For round i, with 1 ≤ i ≤ n, the verifier generates a random classical bit ci, derives
a challenge qubit |ϕi⟩ from ci and a, and then sends |ϕi⟩. We write c = c1 . . . cn for the
resulting n-bit string. The prover measures the challenge qubit with outcome c′i, then
derives the response qubit |ψi⟩ from c′i and a. The verifier accepts the response only if
both the response (or more precisely: the response measurement outcome c′′i) is correct
and the time ∆t (the time between sending |ϕi⟩ and receiving |ψi⟩) is below a threshold
τ .7 Both the challenge and response qubits are encodings of classical bits in either the

7Some protocols allow a few incorrect and/or slow responses to allow for noise on the channel. We do

75

computational or Hadamard basis. The three protocols differ mainly in the details of the
encoding and decoding of the challenge/response qubits, as explained in the corresponding
sections below. Only the AMSP protocol requires a final authentication message, whereas
both Abidin’s protocol and the IRAD protocol are done after the rapid phase.

Currently no experimental data exists to determine the slack time of these protocols,
however standard quantum key distribution (QKD) equipment suffices for executing such
experiments: no fault-tolerant quantum computer is required. We do remark that QKD
hardware is unlikely to be optimized for minimizing slack time.

To prevent TF the protocols apply a standard technique from classical distance bound-
ing: The proposed countermeasure for all three protocols is to instantiate f as

d = gk(Nv∥Np)

b = Encd(k)

fk(Nv, Np) = d∥b,
(3.12)

where ∥ denotes concatenation, g is a keyed PRF, and Encd is symmetric encryption using
d as the key. The AMSP protocol explicitly states that the encryption should be a one-time
pad:

Encd(k) = d⊕ k, (3.13)

whereas the other protocols do not specify what encryption algorithm to use.

In classical distance bounding, Equation (3.12) provides TF resistance, since knowledge
of both d and b is required to provide correct responses in the timed phase. The same does
not hold for the quantum protocols, since some information about the encoding basis
leaks, so that an adversary can interact with the protocol in such a way that the leak
reveals information about bi ⊕ di. If TF resistance uses a one-time pad, then this leaks ki.
Otherwise (when using a symmetric cipher for TF resistance) this leakage is insufficient to
extract the key, however in that case TF is possible.

Some scenarios do not require TF resistance, therefore we also consider a version of
each protocol without any countermeasure against TF. In that case, we instantiate f in
Equation (3.11) directly with a PRF, and splitting the result to get d∥b := a. (A dishonest
prover can achieve TF by sending a directly to the accomplice.) The resulting protocols
still provide protection against DF and MF, so we analyze this to see how much security
they offer.

not consider noise in this paper, but note that our attacks should generalize to noise-resistant adaptations
of the analyzed protocols.

76

3.1 Unproven (in)security

In the absence of formal definitions, it is impossible to prove that a protocol is either secure
or insecure, yet I claim the analysis in this chapter is meaningful. The attacks we describe
against each protocol are based on real-world attack scenarios and lead to real loss of
security: namely key extraction or TF. We avoid any debate surrounding the formalization
of TF by appealing to the commonly accepted informal interpretation. In the TF attacks
the verifier will certainly accept the accomplice, while the information leaked on the long
term key is negligible in its length. Note that this is a significantly more powerful attack
than one where the dishonest prover reveals both di and bi for some indices i. In that case,
to make TF succeed with non-negligible probability, the prover must reveal enough bits to
allow efficient recovery of k through a brute-force search.

We also improve the security analyses and show that the protocols (without TF re-
sistance) are likely secure. To do so, we provide realistic examples of DF and MF and
analyze the success probabilities of the attacks. Thus we only provide an upper bound
on the security of the analyzed protocol, but we do not claim that the described attacks
are optimal. In case of the AMSP protocol we show the existing analysis is based on a
physically impossible attack, while for the other two protocols we show that better attacks
exist than was previously claimed.

4 AMSP protocol

The AMSP protocol [AMSP17], depicted in Figure 3.8, uses qubit encoding

|ϕi⟩ = |ψi⟩ = Hai |ci⟩ (3.14)

in the timed phase, where ai is the i-th bit of a and H is the Hadamard gate. In other
words if ai = 0 the verifier sends a bit in the computational basis and otherwise the verifier
sends a bit in the Hadamard basis. The authentication phase consists of a single message
by the prover:

MACk(v, p,Nv, Np, c
′), (3.15)

where v and p are some identifiers for the verifier and prover. This convinces the verifier
that the prover was able to learn c by measuring |ϕi⟩ and re-encoding |ψi⟩ in the correct
basis, instead of merely reflecting |ϕi⟩.

Note that if f is instantiated with Equation (3.12), the first half of the rapid bit exchange
uses d and the second half uses b, which implies that a protocol with n rapid rounds uses

77

Verifier (k) Prover (k)

Nv := random nonce Np := random nonce
Nv

Np
a := fk(Nv, Np)

c
$← {0, 1}n

a := fk(Nv, Np)

|φi〉 := Hai |ci〉 |φi〉

c′i := measure(Hai |φi〉)
|ψi〉 := Hai |c′i〉|ψi〉

c′′i := measure(Hai |ψi〉)

time ∆ti
Repeat
n times

MACk(v, p,Nv, Np, c
′)

Accept iff
MAC is valid, and c = c′′, and

∀i : ∆ti < τ

Figure 3.8: AMSP quantum distance bounding protocol [AMSP17]

78

an (n/2)-bit key k. If E is a one-time pad it holds that ai = di and ai+n/2 = bi = ai ⊕ ki
for 0 ≤ i < n/2.

4.1 Key-extraction under XOR encryption

The AMSP protocol leaks some information about the encoding bases. When applying the
countermeasures of Equations (3.12) and (3.13), an adversary can impersonate a verifier
and engage with a prover to extract the bits ki. The adversary interacts with the prover
only, so this attack can be executed at arbitrary distance from the verifier.

After exchanging some random initial nonces, the adversary guesses a′i for the legitimate
basis ai and sends |ϕi⟩ = Ha′i |ci⟩ for some value of bit ci. The prover measures Hai|ϕi⟩ with
outcome c′i, then replies with |ψi⟩ = Hai |c′i⟩. The adversary measures Ha′i |ψi⟩ with outcome
c′′i . If the guess was correct (a′i = ai) then c′i = c′′i , else both c′i and c′′i are independent and
uniform random bits. When c′′i ̸= ci, the adversary concludes that their guess was incorrect
and thus the basis ai = a′i ⊕ 1 has leaked completely. Else if c′′i = ci, the adversary knows
that their guess was probably correct and thus partial information on ai has leaked. If
both ai and ai+n/2 fully leak, the adversary has learned ki = ai ⊕ ai+n/2 = a′i ⊕ a′i+n/2 and
otherwise they have gained some partial knowledge on ki.

The adversary can attack every round in a single distance bounding session and then
repeat the attack for multiple sessions until all n/2 bits of k have leaked. The PRF g
ensures that the adversary can do no better than a random guess a′i = d′i in the first
half, leaking some information on di. In the second half the adversary can use the leaked
information on di and ki (leaked from earlier attacked sessions) to improve the guess b′i.
Here better means that it is more likely that b′i ̸= bi and bi leaks completely. Instead of
extracting the full key this way, the attacker can halt early and switch to an offline attack,
brute-forcing f until having found a key k consistent with the already leaked bits of k and
the observed Nv, Np and leaked bits of a per session.

A full analysis is given below and shows that this leaks the complete key rapidly. For
example when n = 256, a moderately powerful adversary (one that can compute 240 hashes)
is expected to extract the full 128-bit key after engaging in 16 sessions with the prover.

4.1.1 AMSP attack analysis

For 0 ≤ i < n, the attacker guesses a′i ̸= ai with probability 1/2, so the prover replies with
|ψi⟩ ≠ |ϕi⟩. With probability 1/2 the attackers measurement results in c′′i ̸= ci and only in

79

this case does the attacker conclude that ai = a′i ⊕ 1. Note that this is independent of the
measurement outcome c′i at the prover side. Thus the basis ai leaks with probability 1/4.

From the attacker’s perspective, initially the value ai+n is independent from ai (since
nothing is known about ki) and the same attack leaks basis ai+n = a′i+n⊕1 with probability
1/4. Only when both bases leak does the attacker conclude that ki = ai⊕ai+n = a′i⊕a′i+n,
so each bit of k leaks with probability 1/16.

The attacker initiates sessions with the prover until all the bits have leaked. Let ℓ
denote the number of bits of k that have not leaked yet and let Eℓ denote the expected
number of sessions until ℓ bits have leaked. Let E0 = 0 and for ℓ > 0 define Eℓ recursively:
after each protocol execution (ℓ − j) out of ℓ bits leak, following a binomial distribution,
and Ej additional sessions are necessary to extract the remaining j bits. By the linearity
of the expectation value it then holds that:

Eℓ = 1 +
ℓ∑

j=0

(
ℓ

j

)(
1

16

)ℓ−j(
15

16

)j

Ej. (3.16)

Extracting the j = ℓ term from the right-hand side sum reveals that:

Eℓ =
1 + 16−ℓ

∑ℓ−1
j=0

(
ℓ
j

)
15jEj

1− (15/16)ℓ
. (3.17)

Then En is the expected number of sessions to extract the full key. For example, the attack
is expected to extract a 128-bit key after attacking E128 ≈ 84.7 sessions.

4.1.2 Improved key extraction

It turns out that the above attack is not using everything that can be learned from the in-
teraction with the prover: a few observations can reduce the number of protocol executions
necessary to extract the key. These improvements have been incorporated in Algorithm 3.1.

First note that if ci = c′′i then it is more likely that ai = a′i, leaking partial information
about the encoding basis ai. This (partial) information about ai and ai+n leaks (partial)
information about ki. The adversary exploits this by keeping track of a variable k′i that
stores the probability that the real secret bit ki is one, initialized at k′i = 1/2. After each
session the attacker updates the value to reflect what was learned in that session.

80

Algorithm 3.1 Improved key extraction in the AMSP protocol.
for i := 1, . . . , n do

k′i := 0.5

while not enough information has leaked do
initialize session ▷ store Nv and Np

a′
$← {0, 1}n

c
$← {0, 1}2n

for i := 1, . . . , n do
send |ϕi⟩ := Ha′i |ci⟩
c′′i := measure(Ha′i|ψi⟩)

for i := 1, . . . , n do
a′i+n := ⌊1− k′i⌉ ⊕ a′i ⊕ ci ⊕ c′′i ▷ guess a′i+n ̸= ai+n

send |ϕi+n⟩ := Ha′i+n|ci+n⟩
c′′i+n := measure(Ha′i+n|ψi+n⟩)
if ci ̸= c′′i and ci+n ̸= c′′i+n then

k′i := a′i ⊕ a′i+n

else if ci = c′′i and ci+n = c′′i+n then
if a′i = a′i+n then

k′i := 4k′i/(5− k′i)
else

k′i := 5k′i/(4 + k′i)

else if a′i = a′i+n then
k′i := 2k′i/(1 + k′i)

else
k′i := k′i/(2− k′i)

81

Let Ki denote the probability that ki = 1 after the session and k′i the probability before
the session. The adversary computes

Ki = Pr[ki = 1|c′′i ∧ c′′i+n]

= Pr[ai = 0 ∧ ai+n = 1|c′′i ∧ c′′i+n] + Pr[ai = 1 ∧ ai+n = 0|c′′i ∧ c′′i+n],
(3.18)

using Bayes’ theorem for both terms. Four cases need to be distinguished based on whether
c′′i = ci and c′′i+n = ci+n. When c′′i ̸= ci and c′′i+n ̸= ci+n the bit ki has completely leaked,
otherwise some more calculation is required. It is straightforward that Pr[c′′i = ci|ai = a′i] =
1, Pr[c′′i = ci|ai ̸= a′i] = 1/2 (similar when replacing i with (i + n)) and Pr[ai = a′i] = 1/2.
Given the knowledge k′i and under the assumption that the attacker has guessed a′i+n = a′i,
it holds that Pr[ai+n = ai] = 1 − k′i. By combining all these observations the necessary
probabilities can be calculated, revealing that when c′′i = ci and c′′i+n = ci+n:

Ki =
4k′i

5− k′i
(3.19)

and for the other cases:
Ki =

2k′i
1 + k′i

. (3.20)

Observe that if a′i+n ̸= a′i, then Equations (3.19) and (3.20) express the updated value of
(1−Ki) in terms of (1−k′i). Substituting these terms reveal the form given in Algorithm 3.1.

The attacker then uses this partial knowledge on ki in subsequent sessions to improve
their guess a′i+n, based on k′i and what was learned about ai in the same session. By
attempting to guess wrong (a′i+n ̸= ai+n) the attacker maximizes the probability that the
basis ai+n leaks.

When the attacker stores the nonces Nv and Np that were sent over the public channel,
they have the input to the PRF gk. Some output bits leak to the adversary as well, either
directly through the leaked bits of d or indirectly through the leaked bits of b and the
known bits of k. After enough protocol executions (see Section 4.1.3) the attacker has
learned enough about k and knows enough output bits of fk to find a collision in f and
thus extract k. This splits up the attack in an online phase followed by an offline phase.

4.1.3 Improved key extraction analysis

The required number of sessions is estimated by simulating the attack of Algorithm 3.1
several times. After each protocol execution store the number of bits ki that have not

82

0 16 32 48 64 80 96 112
number of protocol executions

20

216

232

248

264

280

296

2112

2128

re
qu

ire
d

nu
m

be
r o

f h
as

he
s

Figure 3.9: Expected number of offline hashes required for extracting a 128-bit key with
Algorithm 3.1, assuming the adversary initiates the offline part of the attack after the given
number of protocol executions. The results are based on 1000 full attack simulations.

83

fully leaked yet (ℓ) and compute the Hamming distance D = HD(k, k′) between the actual
key and the attackers best guess ⌊k′⌉, obtained by rounding all values of k′. Assuming
the attacker iterates key-candidates in increasing Hamming distance to ⌊k′⌉, the expected
number of hashes until a collision is found is given by

D−1∑

d=0

(
ℓ

d

)
+

1

2

(
ℓ

D

)
.

This number is computed after each session until the entire key has been extracted without
an offline phase. The results of repeating this process several times is given in Figure 3.9.
This strategy may have some false positives caused by hash collisions in the leaked bits,
but after attacking a few sessions this occurs with only negligible probability.

Consider an adversary that can compute approximately 240 hashes. If that adversary
overestimates the required number of protocol executions given in Figure 3.9, to prevent
false positives, they conclude that 16 sessions should suffice to extract the key with over-
whelming probability.

Python code executing the attack against simulated protocol executions is provided
online [Ver18], allowing the user to obtain similar results using different key sizes and
number of simulations.

4.2 Terrorist fraud

When Enc encrypts using a computational cipher, the partial leakage of d and b does
not provide the adversary with sufficient information to extract k. Instead a far-away
malicious prover can assist an accomplice close to the verifier to convince the verifier that
the prover is nearby, without revealing k to the accomplice. They achieve this by letting
the accomplice clone the challenge qubit onto one out of two qubits sent by the prover,
without the accomplice ever learning which qubit holds the clone. The no-cloning theorem
does not apply because the prover is assisting, and the prover knows the basis of the state
to be cloned. The challenge qubit is sent back (unchanged) to the verifier, and the two
qubits containing the clone are sent back to the prover. The prover selects the clone and
measures in the correct basis, learning c so they can send the MAC to the verifier in the
final authentication phase. Note that this final MAC is not part of the timed phase, and
thus there is time for the prover to perform this step

Figure 3.10 shows the details of the attack. The accomplice relays the slow initial phase
to the prover so the prover can compute a. The prover replies by sending two qubits per

84

ai

|ci〉 H H |ci〉

|0〉 H |ci〉

|0〉 H H

Prover

Verifier Verifier

ProverAccomplice

Figure 3.10: Terrorist fraud against the AMSP protocol [AMSP17] with computational
encryption.

round to the accomplice: either |00⟩ if ai = 0 or |++⟩ otherwise. The accomplice applies
two CNOT gates: between qubits one and two and between qubits three and one. Note
that the role of the control- and target-qubit is swapped in the Hadamard basis. If ai = 0
the first CNOT clones |ϕi⟩ and the second gate does not alter the state, resulting in the
state |ϕi⟩|ϕi⟩|0⟩, where |ϕi⟩ = |ci⟩. If ai = 1 the second CNOT clones |ϕi⟩ and the first
gate does nothing, resulting in the state |ϕi⟩|0⟩|ϕi⟩ where |ϕi⟩ = H|ci⟩.

It remains to show that the provided information does not leak k to the accomplice. For
the accomplice to learn k, they must distinguish the cases ai = 0 from ai = 1 based on the
messages of both verifier and prover. These received states have trace distance bounded
by ∥∥∥∥

1

2
(|0⟩⟨0|+ |1⟩⟨1|)⊗ |00⟩⟨00| − 1

2
(|+⟩⟨+|+ |−⟩⟨−|)⊗ |++⟩⟨++|

∥∥∥∥
1

≤
∥∥∥∥
1

2
I,

1

2
I

∥∥∥∥
1

+ ∥|00⟩⟨00| − |++⟩⟨++|∥1

= 0 +
√

1− |⟨00|++⟩|2 =
√
3

2
,

(3.21)

so the Holevo-Helstrom theorem provides the upper bound 2+
√
3

4
on the probability that

the accomplice successfully distinguishes these states. To extract the key k, the accomplice
cannot do better than a product measurement on the n qubits, succeeding with probability(

2+
√
3

4

)n
≈ 0.93n, which is negligible in n and thus the protocol is vulnerable to TF.

85

4.2.1 Non-asymptotic analysis

Although the above argument shows that asymptotically TF is always possible, that may
not be true when instantiated with actual parameters. With the above construction the
dishonest prover may leak too much information to the accomplice. The accomplice can
measure the prover-provided state of Figure 3.10 and learn approximately 93% of the bits
of a. The accomplice then brute-force searches for a k so that the output of fk matches
the observed output, where we note that the accomplice can extract output bits of fk
using the strategies described in Section 4.1. The accomplice can iterate the guesses for k
in order of increasing Hamming distance to the measurement outcome. This requires an
expected

∑0.07n
i=0

(
n
i

)
decryptions and PRF calls. For example if encryption is 128-bit AES

and thus n = 256, this evaluates to approximately 287 calls. If the encryption or PRF
has any weaknesses when partial information about the key is known, faster attacks than
such bruteforcing might be possible. The dishonest prover might conclude that this is not
enough work to prevent the accomplice from learning the key, and therefore they do not
want to assist in TF.

The above could be interpreted as an argument that the protocol does protect protect
against TF. However we remark that interpretation is not without risk, as it puts an un-
usual burden on the implementer that has to choose security parameters. For almost all
cryptographic systems, choosing larger parameters increases security. If the instantiation
of this protocol should be TF resistant, a larger key is not always better: the key should
be small enough to allow a sufficiently powerful accomplice to extract the key from the
dishonest prover, but at the same time it should be large enough to prevent brute-force
attacks on g. Choosing the correct parameter relies on an accurate estimation of both
current and future adversary computing power. This makes the protocol undesirable com-
pared to classical distance bounding protocols, whose security relies only on upper bound
estimates of adversary computing power.

4.3 Improved analysis

We consider the protocol without countermeasures against TF: directly use a PRF for f ,
since those countermeasures either leak the key or do not prevent TF.

For DF, the protocol authors give a success probability of (1/2)n [AMSP17]. This is
correct and easy to see, since both prover and verifier have complete knowledge over the
encoding bases the protocol can be considered classical (not quantum) and an optimal
strategy for the prover is to guess every challenge bit ci.

86

For MF the original analysis [AMSP17] suggests the following attack: “the mafia fraud
attack succeeds with probability (3/4)n, i.e. an adversary can pre-ask the prover for
responses—if he guesses the pre-asked challenge correctly he always wins the round, other-
wise he needs to guess the response with probability (1/2).” However this attack does not
work: it does not address how the adversary distinguishes between incorrect and correct
challenges and does not consider the computation of the correct MAC value. Perhaps sur-
prisingly, the success probability of the best known attack is also (3/4)n, despite the fact
that it requires a completely different strategy, as I will discuss next.

The security of the protocol follows from the no-cloning theorem [WZ82]: after all an
adversary that can perfectly clone |ϕi⟩ can reflect the original to the verifier and send
the clone to the prover and thus successfully complete a relaying attack. The no-cloning
theorem only rules out perfect cloning devices but does not rule out imperfect devices.
These devices have been the subject of much research [BH96; Wer98; BCMM00; MVW13],
providing both constructions of the devices and proofs of their optimality in different
metrics.

The setting for MF is similar to that of a 1-to-2 cloning device of Wiesner’s quantum
money [Wie83]. In that scenario the bank provides a banknote that contains some qubits
encoded in non-orthogonal states. A customer that wants to verify the validity of the
note gives it to the bank so they can measure the qubits and check if they are in the
correct state. A 1-to-2 cloning device attempts to create two copies from a single bank
note so when the bank measures each note individually they both pass the verification.
The task for the distance bounding adversary is similar, where both the prover and verifier
as representing the bank as they will both do an independent measurement on the qubits
that the adversary sends them.

More formally the challenge qubit |ϕi⟩ is described by one of four states, each with
probability 1/4. Consider the quantum channel Φ, representing the cloning device that
takes a single qubit |ϕi⟩ as input and returns a two-qubit state, one shall be sent to either
party. The success probability of the attack on a single qubit is then given by the average

1

4
(⟨00|Φ(|0⟩⟨0|)|00⟩+ ⟨11|Φ(|1⟩⟨1|)|11⟩

+ ⟨++|Φ(|+⟩⟨+|)|++⟩+ ⟨−−|Φ(|−⟩⟨−|)|−−⟩), (3.22)

which is optimal at the value 3/4. An explicit expression for Φ and a proof of its optimality
is given by Molina, Vidick and Watrous [MVW13]. Furthermore their work uses the
product rule to prove that n of these qubits (or similar: n rapid rounds) can be cloned
successfully with probability (3/4)n.

87

There could exist an attack that improves on this result by exploiting the differences
between the quantum money scenario and distance bounding, such as the pseudo-random
choice of bases or some other interaction with the prover and/or verifier that is not available
in the quantum money scenario.

5 Abidin’s protocol

The 2019 protocol by Abidin [Abi19], shown in Figure 3.11, removes the final authentication
phase by encoding the challenge and response in different bases. Specifically the verifier
sends challenge

|ϕi⟩ = Hdi |ci⟩, (3.23)

which the prover measures with outcome c′i. The prover responds with

|ψi⟩ = Hbi |c′i⟩. (3.24)

The initialization phase remains the same: the verifier and prover exchange nonces; and
there is no final authentication phase.

5.1 Key-extraction under XOR encryption

When instantiating Abidin’s protocol with XOR encryption (Equation (3.13)), we can
extract the key bits. The attack described in Section 6.1 is available to the adversary, but
here we describe a more efficient attack. The adversary impersonates the verifier to the
prover to gain information about ki. The adversary interacts with the prover only, so this
attack can be executed at arbitrary distance from the verifier.

The adversary sends

|ξ⟩ = cos
3π

8
|0⟩+ sin

3π

8
|1⟩ (3.25)

to the prover, which is the state “between” |1⟩ and |+⟩, as visualized in Figure 3.12.
Specifically |⟨1|ξ⟩|2 = |⟨+|ξ⟩|2 = 2+

√
2

4
. Let |ξ⊥⟩ = cos −π

8
|0⟩ + sin −π

8
|1⟩, so the adversary

measures the reply |ψ⟩ in the orthonormal basis {|ξ⟩, |ξ⊥⟩} with outcomes c′′i = 0 or c′′i = 1,
respectively. The prover measurement likely collapses |ξ⟩ to |1⟩ (resp. |+⟩) if di = 0 (resp.
di = 1). When ki = 0 and thus bi = di, the prover replies with that collapsed state, so
the adversary likely measures c′′i = 0. Otherwise if ki = 1, then upon measuring |1⟩ (resp.
|+⟩) the prover replies with |−⟩ (resp. |0⟩), which is close to |ξ⊥⟩ and the adversary likely

88

Verifier (k) Prover (k)

Nv := random nonce Np := random nonce
Nv

Np
a := fk(Nv, Np)

c
$← {0, 1}n

a := fk(Nv, Np)

|φi〉 := Hdi |ci〉 |φi〉

c′i := measure(Hdi |φi〉)
|ψi〉 := Hbi |c′i〉|ψi〉

c′′i := measure(Hbi |ψi〉)

time ∆ti
Repeat
n times

Accept iff
c = c′′ and ∀i : ∆ti < τ

Figure 3.11: Abidin’s quantum distance bounding protocol [Abi19]. The relation between
a and (d, b) depends on the countermeasure against TF.

|0〉

|1〉
|+〉

|−〉

|ξ〉

|ξ⊥〉

Figure 3.12: Non-orthogonal bases.

89

measures c′′i = 1. The adversary can attack every round in a single distance bounding
session and then repeat the attack for multiple sessions. If c′′i = 1 occurs more often than
c′′i = 0, they guess ki = 1, otherwise they guess ki = 0. Note that each ki is independent
of each other. Optionally when the adversary is sufficiently confident that all guesses ki
are correct, they can confirm their guess for k by trying to impersonate the prover to the
verifier.

The following analysis shows that the attack is effective and efficient. We have

Pr[c′′i = 0 | ki = 0] = |⟨ξ|1⟩|2|⟨1|ξ⟩|2 + |⟨ξ|0⟩|2|⟨0|ξ⟩|2

=

(
2 +
√
2

4

)2

+

(
2−
√
2

4

)2

=
3

4

= |⟨ξ|+⟩|2|⟨+|ξ⟩|2 + |⟨ξ|−⟩|2|⟨−|ξ⟩|2,

(3.26)

where the last line considers the case di = 1 to highlight the independence on di. Similarly
we have

Pr[c′′i = 0 | ki = 1] = |⟨ξ|+⟩|2|⟨0|ξ⟩|2 + |⟨ξ|−⟩|2|⟨1|ξ⟩|2

= 2

(
2 +
√
2

4

)(
2−
√
2

4

)
=

1

4

= |⟨ξ|0⟩|2|⟨+|ξ⟩|2 + |⟨ξ|1⟩|2|⟨−|ξ⟩|2,

(3.27)

showing that this attack is a Bernoulli trial with success event c′′i = ki and probability of
success 3/4. The number of success events thus follows a binomial distribution and the
strategy of guessing ki as the majority of outcomes c′′i fails if more than half the Bernoulli
trials fail. After attacking R rounds we have Pr[#(c′′i = ki) ≤ R/2] ≤ exp(−2(1/4)2R) =
exp(−R/8) by Hoeffding’s tail bound on the binomial distribution, so the error for the
guess ki becomes negligible in R.

Write k′i for the majority of outcomes c′′i , then the probability p that the full guess k′
is correct is

p = Pr[k′ = k] =
n∏

i=1

Pr[k′i = ki]

= (1− Pr[#(c′′i = ki) ≤ R/2])
n

≥ (1− e−R/8)
n
.

(3.28)

So attacking R = −8 ln(1 − n
√
p) sessions extracts the full key with probability p. For

example if n = 128, then attacking R = 57 rounds extracts the key with probability
p ≥ 0.9.

90

5.2 Terrorist fraud

Instead of measuring |ϕi⟩ and re-encoding |ψi⟩ (as stated in [Abi19]) the prover also succeeds
by replying

|ψi⟩ = Hdi⊕bi |ϕi⟩, (3.29)

which does not measure anything and applies a Hadamard to the challenge qubit condi-
tional on the value of di⊕ bi. Therefore this protocol does not prove to the verifier that the
prover knows both d and b, only that they know d ⊕ b. This also means that a malicious
prover can give d⊕ b to the accomplice for achieving TF.

Assuming g is a secure PRF and Enc is a secure encryption function, the value d ⊕ b
does not leak k to the computationally bounded accomplice. To see that the accomplice
learns nothing about d from interaction with the verifier, compare the density operators of
the challenge state given the different states of di:

1

2
(|0⟩⟨0|+ |1⟩⟨1|) = 1

2
(|+⟩⟨+|+ |−⟩⟨−|) , (3.30)

which means that |ϕi⟩ does not provide any information about di, so the accomplice cannot
use the verifier to learn k. Note that the attack described in Section 6.1 may reveal partial
information of d and b, but this is insufficient to reveal k.

5.3 Improved analysis

Consider the protocol without any countermeasure to TF, so the key is just split in two
parts as d∥b := gk(Nv, Np). The original analysis [Abi19] computes the success probability
of both DF and MF as a function of HD(d, b): the Hamming distance between d and b.
In some protocols this makes sense:8 sometimes DF is easier depending on di ⊕ bi, so that
a dishonest prover can lower HD(d, b) by evaluating gk on many Np. For this protocol
however, it does not help with DF. In MF the prover is honest, so that analysis should
assume Pr[di = bi] = 1/2.

The original analysis [Abi19] claims that if di = bi the prover can reflect the challenge
qubit instead of measuring and re-encoding it, thereby reducing the required processing
time and increasing the distance slightly. I do not consider this to be DF, since the prover
must still be within the distance imposed by the verifier threshold τ for this to work. The
verifier should assume zero computation time when calculating the upper bound of the

8For example, this is relevant for the protocol I analyze in Section 6.3.

91

prover distance. Instead, the adversary can send |ψi⟩ = |0⟩, succeeding with probability
1/2. The protocol with n rapid rounds thus achieves a (1/2)n success probability for DF,
instead of the claimed (1/2)HD(d,b).

I summarize the original analysis for MF: it considers three strategies, pre-ask, post-
asking or simply reflecting the challenges,9 but limits the adversary to the computational
and Hadamard basis. Pre-asking |ϕi⟩ $← {|0⟩, |1⟩, |−⟩, |+⟩} gets the correct response |ϕi⟩
from the prover with probability 1/2. In the suggested post-ask strategy, the adversary
measures and replies in classically guessed bases. That succeeds when the adversary guesses
both di and bi correct, otherwise Pr[ci = c′′i] = 1/2, so this succeeds with probability 5/8.
Reflecting succeeds if di = bi, otherwise Pr[ci = c′′i] = 1/2, so this has success probability
of 3/4.

Instead we combine the ideas described earlier to show a better pre-ask strategy exists
(without claiming this attack is optimal). The adversary first relays the nonces so the
prover and verifier will compute the same d and b. The adversary then executes the key-
extraction attack of Section 5.1 on the prover, resulting in a guess k′i for di ⊕ bi which is
correct with probability 3/4. The adversary now executes the TF attack of Section 5.2
with the verifier, sending Hk′i |ϕ⟩ as response. If k′i was indeed correct the verifier will
accept, otherwise their measurement outcome is only correct with probability 1/2. Thus
each rapid round is successfully attacked with probability 3/4 + (1/4)(1/2) = 7/8 and
attacking n rapid rounds succeeds with probability (7/8)n.

6 Improved RAD protocol

The relay attack detection (RAD) protocol [JA16] has neither a timed phase nor a random-
ized challenge, so despite the name it does not detect relaying attacks, as was observed by
Abidin [Abi20]. In that same work Abidin proposes the improved RAD (IRAD) protocol
as a fix, shown in Figure 3.13.

After the initial phase of exchanging nonces, the verifier sends a classical challenge bit
ci and the prover replies with qubit

|ψi⟩ =
{
Hdi |0⟩ if c′i = 0

Hbi|1⟩ if c′i = 1,
(3.31)

there is no final authentication phase.
9Without a authentication phase, the post-ask and reflection strategy do not require the prover, so that

technically these describe impersonation attacks.

92

Verifier (k) Prover (k)

Nv := random nonce Np := random nonce
Nv

Np
a := fk(Nv, Np)

c
$← {0, 1}n

a := fk(Nv, Np)

ci

|ψi〉 :=

{
Hdi |0〉 if c′i = 0

Hbi |1〉 if c′i = 1
|ψi〉

c′′i :=

{
measure(Hdi |ψ′

i〉) if ci = 0

measure(Hbi |ψ′
i〉) if ci = 1

time ∆ti
Repeat
n times

Accept iff
c = c′′ and ∀i : ∆ti < τ

Figure 3.13: The IRAD quantum distance bounding protocol [Abi20]

93

6.1 Key-extraction under XOR encryption

When Enc is implemented as a one-time pad, an adversary can extract the key k. The
attack we propose is an adaptation of the attack on the Tu and Piramuthu protocol [TP07]
described in [KAK+08]. The adversary tampers with only a single rapid round, relays all
other rounds between the verifier and prover, and then observes if the verifier accepts. In
the classical setting this accept/reject bit always leaks one bit of the key ki, but in the
quantum setting it introduces a one-sided error, which will eventually leak the bit ki. Since
the attack requires tampering with a legitimate session, it is assumed that the adversary is
able to set up a person-in-the-middle (PITM) attack between the verifier and the nearby
prover, which might be harder to execute in practice than the previously discussed key-
extraction attacks.

Specifically the adversary can target any round i and flips the challenge bit ci. The
adversary then relays the prover response |ψi⟩ to the verifier. If di = bi, then the verifier
measures |ψi⟩ in the correct basis but with outcome c′′i ̸= ci and the verifier rejects. Other-
wise if di ̸= bi then the verifier gets a uniform random measurement outcome c′′i and may
accept. If the verifier accepts the adversary concludes that di ̸= bi and ki = 1, but if the
verifier rejects the adversary is not sure about the value of ki (although it is more likely to
be zero).

A similar strategy using the accept/reject bit can, with 50% probability, leak that
di = bi and in that event the adversary knows ki = 0 with certainty. This time the
adversary both flips the challenge bit ci and applies a Hadamard gate to the prover reply
|ψi⟩. The verifier measures H|ψi⟩ in the correct basis if di ̸= bi and rejects, otherwise they
accept with probability 1/2.

A strategy for extracting the entire key k is to alternate the above two attacks on a
single round i until ki leaks and repeating it on all n bits. Note that if the verifier rejects
after the first attack, relaying |ψi⟩, the adversary has gained partial information about ki:
Pr[ki = 0 | verifier rejects] = (1/2)(1/2)/(3/4) = 1/3 by Bayes’ theorem. If the verifier also
rejects after the second attack, relaying H|ψi⟩, the adversary considers ki to be a uniform
random bit again. To extract a single bit ki has expected runtime

∞∑

i=0

(2i+ 1)

(
3

4

)i(
2

3

)i(
1

4

)
+

∞∑

i=1

(2i)

(
3

4

)i(
2

3

)i−1(
1

3

)

=
2

4

∞∑

i=0

i

(
2

4

)i

+
1

4

∞∑

i=0

(
2

4

)i

+

(
2

3

)(
3

2

) ∞∑

i=1

i

(
2

4

)i

= 1 +
1

2
+ 2 =

7

2

(3.32)

94

and the attack extracts the full key after an expected 7n/2 sessions. The adversary can
extract some bits of di by sending ci = 0, providing a target for bruteforcing f to extract
k when it has only partially leaked through the above attack.

Alternatively the adversary can (in addition to flipping the challenge bit that gets
passed to the prover) apply the gate XZ (or XZH) to the prover response |ψi⟩ so if the
verifier rejects it leaks the bit to the adversary. This does not change the expected runtime,
but may be harder to detect by the legitimate users as it results in fewer overall rejections.

6.2 Terrorist fraud

When Enc is implemented as a computational cipher it does not protect against TF.
The malicious prover can send two qubits to the accomplice: Hdi |0⟩ and Hbi|1⟩, and the
accomplice selects the correct reply depending on the challenge bit ci.

The prover does not reveal d and b to the accomplice by sending those qubits. The

Holevo-Helstrom theorem provides the bound 1
2
+ 1

2

√
1− |⟨0|+⟩|2 = 2+

√
2

4
on what the

accomplice can learn per bit di (and the same value for bi). This bound is achieved by the
optimal measurement in the basis {|ξ⟩, |ξ⊥⟩} as defined in Equation (3.25). Assuming that g
and Enc are secure functions, the accomplice can do no better than a product measurement

to guess all bits of d and b. The overall success probability is
(

2+
√
2

4

)2n
=
(

3+2
√
2

8

)n
≈

0.73n, meaning that the accomplice has only negligible probability of extracting k and thus
the protocol is vulnerable to TF.

Again the argument is asymptotically sufficient, but here we show that a brute-force
attack by the accomplice is not possible either in the real world. The accomplice learns
approximately 85% of both n-bit strings d and b and can extract k with

∑0.3n
i=0

(
2n
i

)
expected

decryptions and PRF calls. However, for 128-bit AES and n = 128 this evaluates to
approximately 2151 calls, so the dishonest prover can send the two qubits without leaking
too much and TF is possible.

6.3 Improved analysis

The original analysis claims DF success probability (1/2)n, because it only considers an
adversary limited to the computational and Hadamard bases.

For DF we distinguish three cases. When di = bi, the correct replies (depending on ci)
are orthogonal and thus the prover cannot do better than a random guess for ci. However

95

when di = 1 and bi = 0 the correct response is |+⟩ or |1⟩, so sending |ξ⟩ provides a 2+
√
2

4

probability that the verifier measurement outcome is correct, independent of the actual
challenge bit that was sent. Similarly when di = 0 and bi = 1 the verifier will likely accept
the reply |ξ⊥⟩. The success probability for DF is thus given by

(
1

2

)n−HD(d,b)
(
2 +
√
2

4

)HD(d,b)

. (3.33)

For an unbiased PRF f it holds that Pr[di = bi] = 1/2, so when trying a single input
Np the success probability for DF is

((
1

2

)(
1

2

)
+

(
1

2

)(
2 +
√
2

4

))n

=

(
4 +
√
2

8

)n

≈ 0.68n. (3.34)

In order to maximize the success probability of DF, the dishonest prover should maximize
HD(d, b). The prover can compute a := fk(Nv, Np) for many nonces Np and then send the
one with the largest HD(d, b). The exact number of tries the dishonest prover gets depends
on their computing power and the maximum delay the verifier allows for the reply Np in
the slow phase. Asymptotically, maxd,b{HD(d, b)} approaches n as the number of tries is
increased, so that the success probability for DF asymptotically approaches

(
2 +
√
2

4

)n

≈ 0.85n. (3.35)

The original MF-analysis considered a straightforward pre-ask strategy: the adversary
guesses the challenge when pre-asking the prover, and if it turns out correct then just
forward the prover’s reply otherwise encode the verifier’s challenge in a random basis
(computational or Hadamard). Note that this strategy succeeds if the guessed challenge,
or the guessed encoding basis, or the verifier’s measurement is correct, so that this succeeds
with probability 7/8 (and not 3/4 as calculated in the original analysis).

The adversary can also do better, using a similar pre-ask strategy. Instead of guessing
a random basis when the guessed challenge was incorrect, the adversary can send a state
that will very likely be accepted: the state “between” |0⟩ and |+⟩ (or between |1⟩ and |−⟩).
Specifically, if ci = 0 the adversary replies with cos (π/8)|0⟩ + sin (π/8)|1⟩ and if ci = 1
the adversary replies with cos (5π/8)|0⟩ + sin (5π/8)|1⟩, which in either case the verifier
accepts with probability 2+

√
2

4
. Thus each round is attacked successfully with probability

1
2
+
(
1
2

) (
2+

√
2

4

)
= 6+

√
2

8
and overall probability

(
6+

√
2

8

)n
≈ 0.93n for MF.

96

7 Fixing the IRAD protocol

Since the key extraction attack is similar to the attack described by Kim, Avoine, Koeune,
Standaert and Pereira [KAK+08], we could apply the same countermeasure that they
suggest. In this section I show that the protocol will indeed be secure and prevents TF,
but a comparison with the Swiss-Knife protocol reveals that the classical protocol is more
secure than the quantum protocol.

The fix is to conclude the IRAD protocol with a final authentication phase where the
prover sends c′ = (c′1, · · · c′n) and an authentication tag

MACk(c
′, idp, Nv, Np) (3.36)

to the verifier, where idp is some identifier for the prover. The verifier accepts only if
c = c′ = c′′ and the tag is valid. Any attempt to learn a bit ki by flipping a challenge bit
will be detected since ci ̸= c′i and in that case the protocol rejects without leaking a key
bit. The encryption must be a one-time pad, otherwise TF would be possible using the
attack of Section 6.2. The fixed protocol is depicted in Figure 3.14.

7.1 Analysis

The analysis for DF in the fixed protocol does not change, so that the success probability
is given by Equation (3.33).

The MF attack of Section 6.3 will not work. Any pre-ask strategy will have to guess all
challenges ci correct in order to retrieve the correct MAC tag. Instead a post-ask strategy
will perform better: the adversary tries to give the correct responses to the challenges, then
forwards the challenges to the prover in order to get the correct MAC tag. The response is
the same as described in Section 6.3, so each round is attacked successful with probability
2+

√
2

4
and overall probability

(
2+

√
2

4

)n
≈ 0.85n.

TF is prevented by the fix. If the dishonest prover provides Hdi |0⟩ and Hbi |1⟩ to the
accomplice, this leaks information about the key bit ki: by the analysis of Section 6.2 the
values leak 2+

√
2

4
bits about di and bi, respectively. Since k = d ⊕ b, sending both values

leaks 3+2
√
2

8
≈ 0.73 bits of information about ki to the accomplice. Although sending these

values for every round does not leak the entire key k, it likely provides sufficient information
to start a brute-force to extract the rest of the key, for example against the MAC sent in
the final phase. Furthermore, if the prover engages in TF just a few times in this manner,
the leaked information per bit ki rapidly increases to one.

97

Verifier (k) Prover (k)

Nv := random nonce Np := random nonce
Nv

Np
d := gk(Nv, Np)
b := d⊕ k
c

$← {0, 1}n

d := gk(Nv, Np)
b := d⊕ k

ci

|ψi〉 :=

{
Hdi if c′i = 0

Hbi if c′i = 1
|ψi〉

c′′i :=

{
measure(Hdi |ψ′

i〉) if ci = 0

measure(Hbi |ψ′
i〉) if ci = 1

time ∆ti
Repeat
n times

c′,MACk(idp, Nv, Np, c
′)

Accept iff
MAC is valid, and c = c′′, and

c = c′, and ∀i : ∆ti < τ

Figure 3.14: The IRAD protocol with a countermeasure against key extraction.

98

However, the adversary can also help the accomplice by sending only Hdi |0⟩. This leaks
partial information about di, but by the nature of the one-time pad it leaks nothing about
ki. Similarly the prover could send only Hbi |1⟩, but never both possible responses for the
same round. Effectively the dishonest prover allows the pre-ask strategy for MF described
in Section 6.3: giving a TF success probability of

(
6+

√
2

8

)n
≈ 0.93n.

7.2 Comparison to Swiss-Knife

In order to fix the IRAD protocol, I had to make it almost identical to the basic version of
the Swiss-Knife protocol [KAK+08] discussed in Section 2.1, with the only difference that
the prover responds with |ψi⟩ instead of

ri =

{
di if c′i = 0

bi if c′i = 1.
(3.37)

The best known attacks on the Swiss-Knife protocol achieve DF with probability (3/4)n,
MF with probability (1/2)n and TF with probability (3/4)n, as also summarized Table 3.1.
Introducing qubits in the rapid phase thus only diminishes the security.

8 Discussion

This paper has demonstrated that none of the (three) existing quantum distance bounding
protocols [AMSP17; Abi19; Abi20] protect against TF. In case the TF countermeasure is
implemented with a one-time pad, the long-term key leaks. The problem in the AMSP
protocol and Abidin’s protocol is that some information about the encoding bases leaks,
which reveals sufficient information about the long term key to fully extract it. Instead
in the IRAD protocol one key bit may leak through the accept/reject output bit of the
protocol itself.

When the TF countermeasure is instead implemented with computational cryptogra-
phy, it no longer provides meaningful protection against TF. Against the AMSP protocol
the dishonest prover can assist the accomplice in order to perfectly clone a qubit, without
knowing where it was cloned to. A case could be made that this protocol does provide
some resistance against TF, since the provided state might allow a brute-force attack on
the key. Nevertheless this protection seems much weaker than what can be achieved in
classical distance bounding. Against Abidin’s protocol and the IRAD protocol, the prover

99

Table 3.1: Success probability of best-known attacks on distance bounding protocols
with n rapid rounds. The quantum distance bounding protocols are implemented without
any TF resistance. See Section 4.2.1 for further discussion of TF resistance of the AMSP
protocol.

DF MF TF

AMSP [AMSP17] (1/2)n (3/4)n 1∗

Abidin [Abi19] (1/2)n (7/8)n 1
IRAD [Abi20] ≲ 0.85n ≈ 0.93n 1

fixed IRAD ≲ 0.85n ≈ 0.85n ≈ 0.93n

Swiss-Knife [KAK+08] (3/4)n (1/2)n (3/4)n

Brands-Chaum [BC93] (1/2)n (1/2)n 1

can provide the accomplice with information to complete the protocol himself, without
leaking too much information about the long-term key.

Some scenarios for distance bounding do not require TF resistance so that the attacks
of this paper do not apply. I summarize the result of the improved analysis in Table 3.1,
where the quantum distance bounding protocols are assumed to be implemented without
any TF countermeasure. However in that case, both Abidin’s protocol and the IRAD
protocol provide less security than originally claimed (Sections 5.3 and 6.3), and more
importantly it provides less security than existing classical protocols [ABB+18]. Even
when fixing TF resistance in the IRAD protocol, the result performs worse than the Swiss-
Knife protocol. The AMSP protocol has better DF resistance than most existing RFID
protocols, at the cost of having worse MF resistance. However, it requires both a single-
photon source and detector, so that the practicality in RFID settings is questionable. In
that case a comparison against something like the original Brands-Chaum protocol seems
more appropriate, and no security is gained by the AMSP protocol.

Unlike most other proposals within the field of quantum cryptography the proposed
protocols rely on computational primitives and do not achieve information theoretic secu-
rity. It might be possible that the different hardware requirements somehow favor these
quantum protocols, although my (admittedly limited) knowledge in that area tells me
that is unlikely. One issue not mentioned so far is that sending qubits encoded in photon
polarisation makes the communication directional, unlike the broadcast signal of RFID
communication. Without a clear benefit provided by using quantum communication, it is
unlikely that sending qubits in the rapid phase will ever be preferred over sending classical

100

bits.

Both the attacks and improved analyses on the protocols highlight the importance of
unambiguous security definitions and clear security models, both for distance bounding
protocols and security protocols in general. At the moment it remains an open question
whether the existing models are meaningful against quantum adversaries. I highlight that
this remark extends beyond distance bounding protocols that employ quantum information.
Obviously the computational primitives used in any distance bounding protocol should be
secure against such adversaries, but it should protect against certain quantum strategies.
For example, future research could investigate whether a quantum adversary can benefit
from nonlocal strategies [CHTW04].

101

Chapter 4

Key authentication from post-quantum
key encapsulation mechanisms and
signatures

1 Introduction

Secure messaging has become increasingly popular, with the most notable recent develop-
ment being the Signal protocol [Mar16a; Mar16b], which brought end-to-end encryption to
billions of users.1 Since its inception, Signal has been studied by many academics, resulting
in a formal security analysis of the abstract protocol in a custom security model [CCD+20]
and post-quantum secure variants [ACD19; BFG+21a]. Despite the popularity of the
Signal protocol, in this chapter I want to focus on the Off-the-Record Messaging (OTR)
protocol, a predecessor that introduced a unique solution to the key authentication prob-
lem.

The OTR protocol [BGB04] is an instant messaging protocol for secure and deniable
conversations. The initial handshake is performed by an authenticated key exchange
(AKE), which establishes a shared secret between two public keys. However (as with
any secure messaging solution) the AKE is only the first part of trust establishment, and
additional key authentication is required [UDB+15]. The communicating parties should
confirm that the public keys that were used in the handshake actually belong to the other

1WhatsApp uses the Signal protocol:
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately.

102

https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately

person. Without key authentication, a person-in-the-middle (PITM) could inject their own
key to eavesdrop on and tamper with all communication undetected. Key authentication
is therefore required for binding the users to their public key.

A widespread method that achieves this is provided by certificates. These are docu-
ments containing the user identity and the public key (in addition to some other data),
which is then signed by a trusted third party. Centralized solution can be provided by a
certificate authority (CA), which is usually part of a larger public key infrastructure (PKI).
This solution is most widely known, since it is required in HTTPS [Res00] and it is typically
used in other applications over Transport Layer Security (TLS) [Res18]. A decentralized
alternative is the web of trust (WOT) as used in Pretty Good Privacy (PGP) [Zim95],
where users sign “keys” of other users.2 In both solutions the signer does not have to be a
directly trusted party, but they should be indirectly trusted via a chain of signed certifi-
cates/keys. Each “trust hop” comes with an indication of how much the next party can be
trusted to certify other parties, where the WOT usually allows for more fine-grained indi-
cations. That also means that some form of initial trust establishment is still required. For
example, root certificates come preinstalled with many operating systems, which pushes
trust further down the chain to device vendors and manufacturers, while WOT solutions
require ceremonies for entering the web.

Secure messaging systems generally avoid the above mentioned issues, instead they
require direct key authentication. For example, most Signal-based applications operate in
the trust on first use (TOFU) model with optional verification: the public keys used in
the initial handshake are accepted and an error or warning is presented to the user only
if the public key ever changes in the future. Verifying the owner of the key is left as the
responsibility of the users, who are provided with a fingerprint (the hash of the public
key)3 for manual out-of-band comparison.

OTR offers another solution [AG07] by assuming that the users share a low-entropy
secret, such as a password. After establishing a secure channel with the AKE, the users
execute the socialist millionaire protocol (SMP) over that channel: a zero-knowledge pro-
tocol for checking the equality of two values. For the input to the SMP the parties hash the
user identities, the public keys, the session identifier, and the low-entropy shared secret.
This binds the users not just to their public keys, but to the entire session. The SMP is
advantageous from a usability perspective: using shared information is natural for humans,
it avoids having to expose users to cryptographic concepts such as keys and fingerprints,

2In the context of PGP, the “key” being signed is a document containing both the user’s long-term
public key and identity, making it more like a certificate than a key.

3Signal replaced the fingerprint with a safety number: a hash of the user telephone number and public
key [Mar17].

103

and in-band key authentication avoids user errors that occur in setting up an out-of-band
channel.

The problem with the SMP is that it is based on the Diffie-Hellman (DH) primitive,
and can therefore be broken by a quantum adversary using Shor’s algorithm [Sho94]. In
this chapter I present a post-quantum solution to allow in-band key authentication as a
necessary step towards fully post-quantum OTR. The solution I propose builds (a weak-
ened version of) a private equality test (PET) out of oblivious transfers (OTs). The OT
construction is built from ephemeral key exchange (KEX) protocols and a group operation
on its public keys. The implemented KEX combines elliptic curve DH (ECDH) with a
post-quantum key encapsulation mechanism (KEM) such that it is secure as long as one
of them is secure. The PET protocol is then executed over a “pseudo-authenticated” chan-
nel, realized from post-quantum signatures. Pseudo-authenticated roughly means that the
honest user is guaranteed that they are communicating authentically with someone, but
they have no guarantee who is on the other side. KEMs and signatures have been the
focus of much of the research in post-quantum cryptography, partially due to the ongo-
ing National Institute for Standards and Technology (NIST) post-quantum cryptography
standardization effort [NIST17]. The result is a protocol with somewhat large messages,
but built from components that have already been under scrutiny of many cryptographers.
Compared to custom solutions, which might be more efficient, this provides a higher level
of confidence in its security.

1.1 Contributions

This chapter provides a post-quantum solution to the key authentication problem in secure
messaging. The solution first sets up a pseudo-authenticated channel, using post-quantum
signatures with ephemeral keys. I provide a weakened version of the PET functionality,
which is then executed over that channel. I realize this functionality by adapting an
existing protocol [RR17] so that it can provide output to both users. I prove security of the
protocol in the universal composability (UC) framework [Can01], using a simpler variant
of the framework [CCL15] where possible. The protocol is based on the OT functionality,
so that the protocol is quantum secure as long as the used OT is quantum secure.

For the OT I use an existing construction [MR21]. Although the authors claim quantum
security of their construction, I identify a few problems that undermine the validity of that
claim and provide solutions to some of them. An implementation is available online [Ver21].

104

1.2 Notation

The notation JpK represents the indicator function, which has value 1 if property p is true
and 0 if it is false. The notation a[·] represents the entire array a: so when a[i] is defined
for 1 ≤ i ≤ m, then a[·] = (a[1], . . . , a[m]). When specifying protocols and functionalities,
I enumerate steps that must be taken in order, steps listed with bullet points can be taken
in arbitrary order, unless explicitly stated otherwise.

2 Background

I briefly discuss OTR in Section 2.1. Section 2.2 considers the usability aspects of key
authentication ceremonies. I describe the current solution for key authentication in Sec-
tion 2.3. In Section 2.4 I outline the idea of a PET, which forms the foundation of the
protocol proposed in this chapter. I go into the details of the security model in Sections 2.5
and 2.6. Sections 2.7 and 2.8 provide two constructions (OT and split functionalities), both
of which are used in the proposed protocol. Finally, section Section 2.9 discusses an al-
ternative solution for key authentication based on password authenticated key exchanges
(PAKEs).

2.1 Off-the-Record Messaging

A historical step towards making encryption available to the masses was PGP [Zim95]. As
its popularity increased, the usability problems became increasingly apparent [WT99]. The
secure messaging protocol OTR was developed in response [BGB04], which also improved
upon security by adding deniability and forward secrecy.

Currently OTR version 4 (OTRv4) is being developed [OTRv4]. The protocol estab-
lishes a shared secret between two participants (Alice and Bob) using a deniable authen-
ticated key exchange (DAKE) [UG18], which will act as a seed for the double ratchet
algorithm [Mar16a] to authenticate and encrypt messages. The DAKE is based on public-
key cryptography: it uses both ECDH and (ring) signatures. The DAKE assumes that
Alice and Bob have a way to verify the public key of the other party, as is the norm for
AKEs.

Unger and Goldberg suggest mixing the output of a post-quantum KEM with the
ECDH output using a key derivation function (KDF) to achieve quantum transitional
security. The developers have instead opted to ignore transitional security and went with

105

a “brace key” that mixes the result of a regular DH key-exchange instead.4 This means
that transitional security can already be achieved with available cryptographic primitives.

For key authentication, OTR assumes no trusted third parties in the form of a PKI or
a WOT, but instead assumes that parties verify the keys themselves. They can do this
either out-of-band (for example by exchanging key fingerprints in person) or in-band over
the encrypted channel, by executing the SMP [BST01], which is a protocol for comparing if
two values are equal in zero-knowledge. The SMP is historically tied to the OTR protocol,
but there is no technical reason that limits its applicability: the SMP and likewise solutions
can be used for key authentication in any secure messaging application.

2.2 Authentication ceremonies

A systematization of knowledge study from 2015 [UDB+15] identifies three key challenges
in the design of of secure messaging: trust establishment, conversation security and trans-
port privacy. We focus on the trust establishment, which is the process of users verifying
that they are communicating with the intended party. It consists of a KEX using long-term
keys (the initial cryptographic handshake), plus key authentication that confirms that the
used keys are associated with the intended party. When users are required to actively inter-
act in key authentication it is called an authentication ceremony. A key feature from that
study was a comparison of the many existing authentication methods that focussed not
only on the security features, but to also compared their usability and adoption properties.
While the above study focussed on the properties allowed by the methods, many follow-up
studies have assessed the perceived usability by humans (see for example [HLS+21] for a
high-level overview of results). These studies indicate that usability is essential, because
security is reduced if users do not authenticate keys or make mistakes. I focus on key
fingerprint verification methods, because they allow the most security features, especially
in situations that do not provide a trusted third party.

Some of the observed usability problems are general, and mostly orthogonal to the
method of comparison. These problems must be solved in all authentication ceremonies.
For example, many users do not understand the need to authenticate keys at all [HL16;
WGH+19], cannot find how to authenticate keys [VWO+18], do not understand the (often
limited) feedback received when key authentication succeeds/fails [SHWR16], or do not
react adequately to authentication failures [WGH+19].

Currently, the most popular method for key authentication is manual out-of-band fin-
gerprint comparison. Sometimes a QR-code containing the fingerprints is available, which

4See https://github.com/otrv4/otrv4/issues/206 for further discussion on this.

106

https://github.com/otrv4/otrv4/issues/206

can be scanned by the device of the other party if they are in close proximity. For man-
ual fingerprint comparison, it is important that the out-of-band channel is authenticated.
Letting users figure this out for themselves often leads to ceremony failures. Examples of
observed errors are that users send the fingerprint in-band [VWO+17], users only compare
part of the fingerprint or in one direction [VWO+17; NRS18], or users simply toggle the
“mark as verified” switch without any check [VWO+18].

I want to highlight one study from 2017 [VWO+17], for the reason that it tested with
pairs of friends instead of pairing the participant with a researcher, thereby presenting a
more accurate reflection of secure messaging in the real world. The researchers observed
that many pairs attempted to authenticate each other based on shared knowledge, indi-
cating that this is natural human behaviour. They also found that the success rate of
the authentication ceremony was significantly higher in the Viber application compared to
WhatsApp or Facebook Messenger. The difference was that Viber provided the users with
a channel (a Viber phone call) to compare the fingerprints, while hiding the fingerprints
(and the ability to manually toggle verification) outside the duration of the ceremony.
This indicates that such guided in-band ceremonies have better usability, but it should
be noted that voice-based authentication is insecure [SSM18] and similarly the security of
video-based authentication is threatened by deepfakes.

The SMP allows in-band comparison as key authentication, but requires a shared secret
as input from both users. It solves the specific problems of manual out-of-band fingerprint
verification: it allows in-band authentication, compares values in both directions,5 and the
verification switch can be toggled according to the protocol outcome instead of manually.
Users can authenticate without ever having to be exposed to technical terms such as “key”
or “fingerprint”, and do not have to solve the problem of finding a properly authenticated
channel themselves. Instead this solution leans into the observed natural human behaviour
by allowing users to authenticate in a way that many would have done anyway.

Usability issues have been observed with SMP ceremonies [SYG08; AHIC15]. Besides
general issues, observed problems specific to the SMP were that users entered secrets in
the question field instead of the answer field, and that inputs were case sensitive. A study
comparing the usability of authentication ceremonies would be insightful to assess the
correctness of my conjecture that the SMP leads to improved authentication ceremonies.6

5An alternative user interface to the SMP lets one user input a question and expected answer, and the
other user will answer the question. Such questions might be more intuitive, but it should be noted that
they often only authenticate one person to the other, not in both directions. Indeed the OTR software
provides this interface, marking users as verified in one direction only.

6The study [AHIC15] attempts this, but study participants were instructed to complete both ceremonies
subsequently, making it unclear if the reported success rates per ceremony are independent.

107

Alice (x) Bob (y)

a2, a3
$← Zq × Zq b2, b3

$← Zq × Zq
ga2 , ga3

gb2 , gb3
g2, g3 := (gb2)

a2
, (gb3)

a3

s
$← Zq

g2, g3 := (ga2)
b2 , (ga3)

b3

r
$← Zq

Pa = gs3, Qa = gsgx2

Pb = gr3, Qb = grgy2
Ra := (Qa/Qb)

a3
Rb := (Qa/Qb)

b3

Ra

Rb

Ra3

b
?
= Pa/Pb Rb3

a
?
= Pa/Pb

Figure 4.1: The socialist millionaire protocol (SMP) for testing x = y in a group of prime
order q. Each message is accompanied by a zero-knowledge proof (not shown) establishing
that the message was generated honestly.

2.3 Socialist millionaire protocol

The SMP realizes key authentication with a variant of Yao’s millionaire problem. In that
problem, two millionaires want to know which of them is richer, without telling the other
how much money they have. The socialist millionaire problem is a variant, where the
millionaires only care if they are equally rich. A solution is given by the SMP [BST01],
shown in Figure 4.1. The input to the protocol (x for Alice, y for Bob) is the hash output
of the long-term keys used in the DAKE, the user identities, the session id (an output
of the DAKE), and a low-entropy secret shared between the users. The zero-knowledge
property of the protocol ensures an incorrect guess reveals nothing besides x ̸= y, while
the zero-knowledge proofs within the protocol ensure that any deviations are detected.

Each message sent in the SMP is accompanied by a zero-knowledge proof that it was
generated correctly. For the discrete-log messages this is done using the non-interactive
version [FS86] of Schnorr’s protocol [Sch89]: Alice proves she knows a (belonging to message
m = ga). She randomly chooses r ∈ Zq, then computes c = h(gr) (where h is a random
oracle) and d = r − ac mod q , and sends (c, d) to Bob, he accepts if c = h(gd(ga)c).
Similar constructions, based on the Okamoto’s protocol [Oka92] and the Chaum-Pedersen
protocol [CP92], prove that the messages (Pa, Qa) and Ra were formed correctly. Bob
accompanies his messages with similar zero-knowledge proofs.

108

Both the protocol itself and the zero-knowledge proofs rely on the hardness of com-
puting discrete logs. However, quantum adversaries can easily compute this using Shor’s
algorithm [Sho94]. None of the existing post-quantum primitives provide the necessary op-
erations to directly replace the operations in the SMP, so instead of finding a post-quantum
variant of the SMP, we provide a post-quantum solution to the underlying problem.

Although the original protocol provides a fair solution [BST01], an unfair variant of the
SMP is implemented in OTR: Bob can get his output and abort, never sending the last
message to Alice. This drastically lowers the number of messages sent between the parties.

2.4 Private equality test

A PET lets the users privately check if their inputs are equal, and can be expressed as the
secure function evaluation (SFE) (x, y) 7→ (Jx = yK, Jx = yK).

A basic protocol for a PET in the semi-honest model comes from [FNW96]. The ba-
sic idea is explained intuitively as a physical interaction. To secretly compare Alice’s
bitstring x = x1 . . . xn with Bob’s y = y1 . . . yn, Alice writes down 2n random values
((A1[0], A1[1]), . . . , (An[0], An[1])), computes

⊕n
i=1Ai[xi], and puts the values in sealed en-

velopes laid out in pairs. While Alice is not watching, Bob selects envelope yi from each
pair, so that he can compute

⊕
iAi[yi] when opening the envelopes. Alice destroys the

remaining n envelopes. Then the roles reverse: Bob generates 2n envelopes with values
((B1[0], B1[1]), . . . , (Bn[0], Bn[1])) and computes

⊕
iBi[yi], then Alice selects his envelopes

so she can compute
⊕

iBi[xi]. Now Alice writes down
⊕

iAi[xi] ⊕ Bi[xi] and simultane-
ously Bob writes down

⊕
iAi[yi] ⊕ Bi[yi], which they then hand to each other. If they

receive the value they just wrote down, they conclude x = y and otherwise x ̸= y.

The envelopes are an analogy for OT, which allows a digital implementation of the
protocol. A version of this protocol has been shown to be UC-secure [RR17] against
active adversaries, with the caveat that only Bob receives output. Since sending messages
simultaneously is unrealistic in almost all models, we assume Bob sends his message last.
The above protocol then becomes insecure, because Bob can simply reflect Alice’s message.

2.5 Universal composability

The UC framework provides a strong guarantee of security. In this section I recall the
basics of modelling protocols in the UC framework, and go over some details that are

109

relevant to this chapter.7 To keep the below description comprehensible, I omit many
technical details in the description. See the most recent paper defining the framework for
a full description [Can01].

2.5.1 Plain universal composability

At a high level, the UC definition for security is based on the simulation paradigm,
see [Lin17] for a well-written overview of the ideas behind and the techniques used in
simulation. The framework defines a real model, which contains the protocol execution
between parties in the presence of an adversary.8 The framework then defines the ideal
model, which contains an ideal functionality that specifies what the protocol needs to
achieve, but also how much leakage and other adversarial influence on the functionality
is allowed. An ideal functionality can be thought of as being executed by a trusted third
party. The context in which the protocol is executed is captured by an entity called the
environment. Through interaction and collaboration with the adversary, the environment
tries to distinguish the real model from the ideal model. To prevent this task from being
trivial, the ideal model also has an adversary (called the simulator) as an interface between
the ideal functionality and the environment. A successful simulation in the ideal model
ensures that anything the environment observes is indistinguishable from what it observes
in the real model, for any instructions it may give the adversary and any input/output of
the protocol parties.

Security proofs take the form of constructing a simulator S relative to an adversary
A. The simulator then internally simulates the interaction between the adversary and the
parties while it externally interacts with some ideal functionality, which then (indirectly)
communicates with the environment Z. Any messages between the adversary and envi-
ronment are usually forwarded unaltered by the simulator. The simulator is then correct
if the joint distribution over party inputs, party outputs, protocol messages and messages
between the adversary and environment is indistinguishable in the real model and the ideal
model. Since the environment acts as an interactive distinguisher, S must be a straight-line

7I will use the version of the UC framework uploaded in 2020. I also use some UC results from before
that time, which are therefore based on older versions of the framework and therefore require minor
adjustments to fit in the new framework. While there is no reason to suspect that the differences between
versions invalidate those older results or undermine the results of this chapter, the slightly uncomfortable
truth is that a formal argument towards this statement is lacking.

8This is sometimes referred to as the real world, but I reserve that term to refer to implementations of
the protocol, which may differ significantly from the model. Talking about models communicates much
more directly that UC results, no matter how powerful, are at best results about mathematical abstractions
of the real world.

110

simulator, meaning that partial protocol executions must also be indistinguishable for Z.
Most importantly this means that S can not use the simulation technique of rewinding A,
since the external environment Z would trivially detect this.9

Computation The basic computation unit in the UC framework is an instance of an
interactive Turing machine (ITM). Its most important tapes are the (read-only) identity
tape, the outgoing message tape, and three incoming message tapes: for input, (subroutine)
output and backdoor. An ITM instance (ITI) M of ITM µ is defined as M = (µ, id), where
id = (sid,PID) is the identity, consisting of a session identifier and party identifier. The
contents of the (read-only) identity tape of an ITI M is also referred to as its extended
identity and equals (µ̄, id), where µ̄ is the program code of µ. A protocol instance or session
is defined as the set of all ITIs with the same code and session identifier, and each ITI in
the session is called a (main) party. An ITI receiving input from M or sending subroutine
output to M is called a subroutine of M .

Execution ITIs can write to the input tapes of other ITIs via an external-write request,
which are interpreted and “delivered” by a control function. An external-write request
is a message with format (f,M, t, r,M ′,m). Here M and M ′ are the extended identity
of target and source ITI, respectively. The tape t ∈ {input, subroutine-output, backdoor}
specifies which tape of the target ITI the message m should be written. If the reveal-
sender flag r is set, then M ′ is revealed to M , and if the forced-write flag f is set, then
a new ITI with extended identity M is invoked if it does not exist yet. If the control
function allows an external-write request, it writes m to the specified tape and activates
the target ITI next. If the external-write request is disallowed (or if an ITI halts without
an external-write request) then the control function activates the initial ITI next. If an
ITI ignores a message, they revert their state to their state before receiving the message
and halt (and thus the initial ITI is activated next).

Execution of a protocol π in the UC framework is a sequence of activations in the
context of an environment Z (with input z) and adversary A. Given ITMs π and A, let
Cπ,A

EXEC be the standard UC control function. It activates Z as the initial ITI with identity
0 and z on its input tape. The environment is allowed to invoke other parties, limited to a
single session. The control function overwrites the code of environment-invoked ITIs to be
π̄. A ξ-identity-bounded environment can choose any extended identity M ′ as the source
of messages to main parties, as long as it satisfies some predicate ξ (for example, ξ may
disallow Z from setting M ′ to that of any invoked machine). The environment may also

9Technically A is internal and can be rewound, but Z is external and cannot be rewound.

111

invoke the adversary, by setting a fixed target identity ⋄, in that case the control function
overwrites the code of the invoked ITI with Ā. This adversary is allowed to send other
ITIs messages with f unset and t = backdoor. Other ITIs can send backdoor messages to
A with r unset, and they can send input/output messages to other ITIs, which the control
function allows if r is set and if the source M ′ equals the extended identity of the sender.
Protocol execution halts when the initial ITI halts with some (binary) output.

Runtime Each message furthermore contains a natural number called the import, to
bound the ITI runtime: the number of computation steps performed by an instance must at
all times be at most some polynomial in the difference between the total received and total
sent import. An execution can furthermore be parameterized by a (security) parameter λ,
then each ITI only starts when having received an import of at least λ. For security proofs
we only consider balanced environments, where at any point the total import given to the
adversary is at least the sum of imports given to other ITIs. These restrictions ensure
that in the dynamic context of the UC each ITI and the overall system run in probabilistic
polynomial time (PPT), while preventing the environment from trivially distinguishing the
real and ideal model (without any correspondence to a security failure of the protocol).

Emulation Denote execπ,A,Z(λ, z) for the random variable describing the output of the
above described execution, where the probability is taken over the (uniformly chosen) bits
on the random tapes of all involved ITIs. This lets us state when a protocol emulates
another.

Definition 4.1 (UC-emulation). Let π and ϕ be PPT protocols, let ξ be a predicate on
extended identities, and let λ ∈ N be a security parameter. We say that π ξ-UC-emulates
ϕ if for any PPT adversary A there exists a PPT adversary S such that for any balanced,
PPT, ξ-identity-bounded environment Z, on all inputs z with |z| ∈ poly(λ):

|Pr[execπ,A,Z(λ, z) = 1]− Pr[execϕ,S,Z(λ, z) = 1]| ∈ negl(λ). (4.1)

If ξ allows all identities we simply write that π UC-emulates ϕ. The adversary S is called
the simulator. Note that the definition implies that any attack on π can be translated (by
the simulator) into an equivalent attack on ϕ, but not necessarily the other way around,
which is often summarized as “π is at least as secure as ϕ”.

Structured protocols To be able to model security properties in a meaningful manner,
protocols are augmented with a shell mechanism. A structured protocol (or ITM) is split

112

into a shell and a body, where the shell has read/write access to the tapes of the body,
but the body does not have access to the shell tapes (it is oblivious to the existence of
the shell). Upon activation the shell processes incoming messages, possibly altering them,
then write it on the incoming tape of the body. After the body completes its activation,
the shell continues its activation, where it may (optionally) alter and forward any outgoing
messages from the body. The body itself may be structured, thus multiple shells could
be nested. The innermost body represents the actual protocol code (when describing a
protocol in the UC framework one usually only specifies this innermost code), while shells
takes care of code dealing with details of the security model.

Composition The fact that emulation is defined relative to arbitrary environments al-
lows for strong guarantees when protocols are composed. Composition essentially replaces
one subroutine with another. Its main purpose is to design protocols with some simple
abstract building blocks and then instantiate these with a concrete protocol while preserv-
ing security. A few conditions must be fulfilled for a meaningful and secure definition of
composition.

A protocol π is subroutine respecting if only the main parties communicate with existing
ITIs outside the extended session. (The extended session is defined recursively: it contains
all main parties and all parties invoked by a party from the extended session.) This ensures
that we can cleanly replace the protocol with another protocol that may have a different
internal structure. A protocol π is subroutine exposing if it lets the adversary know the
extended identity of all subroutines. The purpose is to ensure that a protocol cannot “hide”
subroutines by giving them a randomized identity (in which case the adversary would not
be able to send backdoor messages to them). This property can be realized via some central
directory ITI that is accessed via shell code. Finally, a protocol ρ is (π, ϕ, ξ)-compliant if
for all executions with a ξ-identity-bounded environment and for all ITIs in the extended
session of ρ: all external-writes with t = input have the forced-write flag set; and incoming
messages on the output tape must have r set; and no external-write targeting π has the
same target session identifier as any external-write targeting ϕ; and all ITIs providing input
to either π or ϕ satisfy the predicate ξ.

Composition takes as input the protocols ρ, π and ϕ, where ρ interacts with subroutine
ϕ. The composed protocol ρϕ→π is the protocol with all subroutine calls to ϕ replaced
with calls to π. This is achieved by wrapping ρ in a shell that takes all input and output
message to/from ϕ and replaces the code ϕ̄ with π̄ (backdoor messages are left unaltered).

Theorem 4.2 (UC theorem [Can01]). Let ρ, π, ϕ be PPT protocols, and let ξ be a predicate
on extended identities. If ρ is (π, ϕ, ξ)-compliant, π and ϕ are subroutine exposing and

113

subroutine respecting, and π ξ-UC-emulates ϕ, then ρϕ→π UC-emulates ρ.

Ideal functionalities Ideal functionalities represent the process that is aimed to be
achieved, and can often be thought of as being executed by a trusted third party. The
goal then is to show that some protocol (preferably one that can be realized in the real
world) emulates this functionality. Formally, an ideal functionality F is just an ITI. To
prevent the calling ITI from interacting with F directly (which would expose its code), it
is executed in a protocol idealF which defines dummy parties (with only shell code) that
forward input/output between the caller and F , such that F sees the external identity. If π
ξ-UC-emulates idealF , we say that a protocol π ξ-UC-realizes F . The protocol executions
corresponding with execπ,A,Z and execidealF ,S,Z are often referred to as the real model
and ideal model, respectively. If π itself uses some ideal functionality G as a subroutine,
then π is said to operate in the G-hybrid model.

The UC theorem is especially important when ρ UC-realizes F in the G-hybrid model
and π UC-realizes G in the H-hybrid (or real) model, because then ρG→π UC-realizes F in
the H-hybrid (or real) model.

Most ideal functionalities cannot simply provide output to protocol parties, because in
the realizing protocol the adversary can decide to abort early. This is usually modelled
through delayed output: before providing a party with output, the functionality sends a
(backdoor) message to the adversary, who can then decide if the output is delivered or
not. We distinguish private and public delayed output, with the following conventional
meaning: when we write that functionality F sends private delayed output (Output, sid,
y) to party P , it means that F sends backdoor message (Output, sid, P) to the adversary,
and only if the adversary replies with (Deliver, sid, P), will F actually send the output to
P . Public delayed output is handled the same, but now the adversary receives (Output,
sid, P , y). Input can similarly be delayed. When not specified, (delayed) output is private.

Corruption The adversary can corrupt protocol parties in the real model by sending
them a backdoor Corrupt message, which is interpreted by the corruption shell of the
party. In the standard PID-revealing corruption model, the shell first reports its ITI party
identity to a dedicated corruption aggregation ITI, that records a list of corrupted PIDs
and reveals this lists on request. We focus on malicious, static corruption. Malicious means
that if corrupted, the shell of a party M forwards any message sent by the adversary as if
coming from M , and any received message is forwarded to the adversary, while the body
of M is never activated. Static means that upon invocation, the shell sends a notification

114

message to the adversary and only accepts a Corrupt message if it is delivered in the next
activation, later Corrupt messages are ignored.

Ideal functionalities accept (Corrupt, P) messages, where P is the PID of a dummy party.
The functionality marks P as corrupted, and input for p is now accepted directly from the
adversary and any output for p is sent to the adversary. The ideal functionality also takes on
the role of the corruption aggregation ITI, by responding to requests from the environment.
Note that an ideal functionality is allowed to change its behaviour depending on who is
corrupted, this should be explicitly mentioned in its description. An ideal functionality
may also accept other backdoor messages that influence its behaviour or leakage. Dummy
parties ignore Corrupt messages.

Communication The plain UC framework does not model communication between pro-
tocol parties, but instead requires protocol designers to specify this. Two commonplace
models, both relevant to this work, are plain communication and authenticated communi-
cation.

Plain communication means that all communication goes unprotected via the adversary,
who can read, alter, inject or drop arbitrary messages. In the plain UC framework this can
be formalized with a shell mechanism: if the body completes its activation with output
(Network, m), then the shell takes any (Network, m) output from the body and writes it
to the backdoor tape of the adversary. When the shell is activated with backdoor input
(Network, m), it activates the body with (Network, m) on its input tape.

Authenticated communication can be modelled with a functionality FAUTH [Can01],
which takes a single message input from the sender and then lets the adversary (who
can read the full message) decide if and when it is delivered to the receiver. Instead I
will use the closely related functionality FMAUTH, which allows multiple messages to be
sent. I use the formalization by Barak, Canetti, Lindell, Pass and Rabin [BCL+05], also
given in Figure 4.2. The formalization assumes that the participating parties are known
beforehand.10

2.5.2 Simple universal composability

The simple UC (SUC) framework [CCL15] is called simple because it removes some of the
complications that arise from the generality of the UC framework. The result is a frame-

10Looking forward, I note that this does not conflict with the post-specified peers as allowed by the OTR
AKE: we assume that when key authentication is initiated, the parties know whose key they are trying to
authenticate.

115

Figure 4.2: Ideal functionality FMAUTH: multi-message authentication [BCL+05].

1. On input (Init, sid): interpret sid = (P , sid ′), where P is a set of PIDs, record P
and forward it to the adversary. Initialize an empty list W of waiting messages.

2. • On input (Send, sid, P, P ′,m) from P : verify that P, P ′ ∈ P , send (P, P ′,m) to
the adversary and add it to W (triples may appear multiple times in W).

• On backdoor message (Deliver, sid, P, P ′,m): if P ∈ P and P is corrupted, then
output (Received, sid, P, P ′,m) to P ′, else if (P, P ′,m) ∈ W , then remove one such
triple from W and output (Received, sid, P, P ′,m) to P ′. Otherwise do nothing.

Router

A

P1

P2

P3
P4

P5

..
.

Pm

GG
G Z

Figure 4.3: SUC G-hybrid model parties P , adversary A, and environment Z. (Image
adapted from [CCL15].)

work that is less expressive, but as secure as the UC framework: it cannot model all UC
functionalities, but all SUC-secure protocols are UC-secure (after a transformation). The
simplicity comes mainly from the fact that parties are fixed in advance and all communi-
cation goes via a central router. In this section I lay out the basics of the SUC, focussing
on the relevant differences between UC and SUC.

Figure 4.3 provides a visual overview of the hybrid model, representing the actual
protocol execution. The real model looks identical but omits ideal functionality subroutine
G.

The parties P1, . . . , Pm are fixed ahead of time and are known to all. Parties send all
messages via the router. The router forwards all messages between parties to the adversary
A, and only delivers messages upon instruction by A: A has read access and full control over

116

Router

S

P1

P2

P3
P4

P5

..
.

Pm

F
Z

Figure 4.4: SUC ideal model, with functionality F, dummy parties P1 . . . Pm, adver-
sary/simulator S, and environment Z. (Image adapted from [CCL15].)

message scheduling, but A cannot alter any message. The environment Z communicates
directly with A, and Z provides protocol input to and receives output from the protocol
parties. Messages between the ideal functionality G (or any of its copies, distinguished by
unique session identifiers) and parties are partially opaque to the adversary.11 Since the
input/output of ideal functionalities always goes via the router, input/output is always
delayed. Backdoor messages are sent directly between the functionality and the adversary.
The parties are fixed ahead of time and are known to all. Execution is identical to that of
the plain UC: it starts with Z and ends when Z halts.

An adversary corrupts a party by notifying the router. That party no longer participates
in the protocol, instead the router lets the adversary send/receive messages on behalf of all
corrupted parties. The router also reveals all corrupted parties to the environment when
requested.

Figure 4.4 shows the corresponding setup in the ideal model. Besides the fact that the
parties are dummy parties, the setup is identical to that of the hybrid model. In order for
the functionality to learn who is corrupted (like it knows in the plain UC framework), the
functionality can request the corruption list from the router as well.

Security is defined the same as in the plain UC model. A protocol π, executed in
the SUC hybrid model, SUC-realizes a functionality F if for every environment Z an
adversary A there exists a simulator S that ensures the environment cannot distinguish
the two models.

11Although technically only a single ideal functionality G is allowed, multiple different ones can be
combined in one larger functionality, where labels ensure that messages are handled by the correct inner
functionality.

117

The SUC framework can express fewer functionalities than the UC framework. For
example it is limited to a fixed set of parties (so SUC cannot model signatures), all com-
munication is via the adversary-controlled router (including output to parties, so SUC
cannot model fairness), and corruption is always total (a party reveals its entire state upon
corruption, so SUC cannot model forward secrecy). However if a protocol SUC-realizes
an ideal functionality, then its transformation of the protocol UC-realizes the transforma-
tion of the functionality. Briefly summarized, the protocol transformation encodes inputs
differently, forces all communication between parties over an authenticated channel and
lets parties communicate directly with ideal functionalities. In the UC framework, the
adversary cannot see or influence the communication with the ideal functionality, so an
additional transformation of the functionality is required that extends the capabilities of
the adversary accordingly. For example, the UC functionality sends the public header of
the message to the adversary and waits for the adversary to “approve” the message before
continuing. Besides the requirement for authenticated communication, these transforma-
tions do not affect a real-world implementation of the protocol.

We note that the SUC framework specification allows multiple message to be sent via
a single FAUTH instance, while technically FAUTH only allows a single message to be sent.
This can trivially be solved by giving the UC to SUC transformation access to FMAUTH, a
functionality that allows multiple messages to be sent (see also Figure 4.2).

Aborts Dealing with protocol aborts is partially built into the SUC framework, in the
sense that all protocols are inherently unfair. That means that the adversary can always
abort early, ensuring that some parties receive an output while others do not. This notion
of security is called security-with-abort. Aborts are always visible to the environment.

However such aborts may never lead to security failures. The protocol itself has to
decide what to do upon invalid inputs or subroutine failures: abort or continue with some
default value. The simulator must be able to show indistinguishable behaviour, which is
not always possible, as demonstrated in this chapter. I will be explicit considering abort
handling throughout this chapter.

2.6 Random oracle model

This chapter operates in the local random oracle model (ROM) [BR93], which models hash
functions by giving parties access to an oracle that provides uniformly random output, while
giving identical output on identical queries. In the UC framework this is realized by ideal
functionality FRO (Figure 4.5). The simulator can implement the oracle itself, replacing

118

Figure 4.5: Ideal functionality FRO: the local random oracle model.
Parameters: input set X and output set Y .

• On (Init, sid), initialize an empty dictionary Dsid. Ignore if already initialized.

• On (Query, sid, i ∈ X): if Dsid[i] is not set: sample Dsid[i]
$← Y ; and output Dsid[i].

Ignore query if not initialized.

the oracle outputs with outputs of their own choice (this is called programming the oracle)
as long as the responses are distributed indistinguishably from the real output.

The ROM is heuristic, in the sense that no real hash function can ever achieve the
strong security guarantees given by the ROM [CGH04]. Despite this theoretical shortcom-
ing of the ROM, no real-world protocol failures have resulted from using random oracles
and attempts to replace ROM-based protocols have even introduced potential security
weaknesses [KM15].

Note that FRO constructs independent dictionaries per sid , which is called the local
ROM. To realize this with a hash function, a method for oracle cloning is required [BDG20].
The simplest method, domain separation, prefixes a fixed-length encoding of sid before all
hash inputs.

The ROM is inherently classical, so a valid objection to using it in the presence of
a quantum adversary is that they have the capability to evaluate a hash function on
a superposition state. If we reflect this capability in the model we get the quantum
ROM (QROM) [BDF+11]: which allows queries of the form

∑
αi|i⟩ which receive a reply∑

αi|D[i]⟩ (appropriately encoded to be unitary).

2.7 Oblivious transfer

OT [Rab81] is an important building block for secure multi-party computation (MPC), and
in fact has been shown that any MPC functionality can be built from it [Kil88]. In 1-out-
of-2 OT, Alice inputs (s[0], s[1]) and Bob inputs a bit j. The protocol outputs s[j] to Bob,
such that Alice does not learn j and Bob does not learn s[1− j]. Expressed as a SFE, we
write ((s[0], s[1]), j) 7→ (∅, s[j]), where ∅ indicates that a party has no output. A common
variant of OT has the functionality itself generate the secrets: (∅, j) 7→ ((s[0], s[1]), s[j]),
where s[0] and s[1] are distributed uniformly randomly, although possibly a malicious party

119

can bias their own output. All variants can be generalized to 1-out-of-m OT where Alice
has m inputs.

2.8 Split functionalities

Most MPC functionalities are modelled as computations over authenticated channels. The
justification is that in most contexts the MPC parties can initialize such a channel with
standard authentication protocols, based on assumptions such as the existence of an ideal
PKI. Since the aim of this work is to implement such an authentication protocol, au-
thenticated channels are not available and instead we operate in the plain communication
model.

There exists a general transformation that turns a functionality that is secure when
computed using authenticated channels into a split functionality [BCL+05].12 For any
UC functionality F, we can define the split functionality sF, as formally specified in Fig-
ure 4.6. The split functionality sF is initialized with an (ordered) set U of participating
parties. The adversary now has the capability to split U into subsets of parties, where the
intersection between different subsets can only contain corrupt parties. For each subset
H, the adversary can run a separate protocol execution FH . This separation is enforced
by initializing each execution with a unique session identifier. The only dependency that
can exist between these executions is that the input of one execution may depend on the
output of another execution. Note that initialization steps must occur in order, and all
computation messages are ignored if initialization is not completed.

I applied a minor technical correction to the original specification of sF: in that defini-
tion each instance FH is initialized with a locally unique session identifier sidH , while the
UC framework formally requires globally unique identifiers. Instead I initialize FH with
session identifier (sid, sidH), which uses the fact that sid is globally unique by assumption.
The unimportance of this detail is highlighted by the fact that the protocol for realizing
split functionalities does ensure that sidH is globally unique with overwhelming probability.

From here on I focus on the two-party case with U = {Alice,Bob}. The environment
can choose U (and thereby fix the role of participants), but since it is part of the session
identifier, it has to be fixed for the entire session. The split functionality ensures that the
adversary is limited to two strategies: either let Alice and Bob communicate with each
other authentically (H = U), or set up separate sessions with Alice (H1 = {Alice}) and
one with Bob (H2 = {Bob}). To simplify the description I omit the identities in calls to
(s)FMAUTH, since the message source and destination are never ambiguous.

12This should not be confused with split KEMs [BFG+21b], which are unrelated.

120

Figure 4.6: Split functionality sF, given some functionality F, assuming malicious static
corruption [BCL+05].

1. Initialization

1. On input (Init, sid) from P : interpret sid = (U, sid ′), where U is an ordered set
of identities, and check that P ∈ U . Send backdoor message (Init, sid, P).

2. On backdoor message (Init, sid, P ′, H, sidH): verify that H ⊆ U , P ′ ∈ H, and
for all recorded H ′ either (H ∩ H ′ contains only corrupted parties and sidH ̸=
sidH′) or (H = H ′ and sidH = sidH′). If all checks pass, record (H, sidH), send
(Init, sid, sidH) to P ′, and invoke FH : a new instance of F with session identifier
(sid, sidH). Corrupt U \H in FH .

2. Computation

• On input (Input, sid, x) from P : find H such that P ∈ H, then provide x as input
from P to FH , or do nothing if such H is not found.

• On backdoor message (Input, sid, H, P, x): if FH is initialized and P ∈ U \ H,
then provide x as input from P to FH , otherwise do nothing.

• On output y for P from FH : if P ∈ H, output y to P , otherwise forward it to
the adversary.

• Forward backdoor messages between the adversary and any initialized FH .

121

Figure 4.7: Protocol ΠF : UC-realizing sF in the sFMAUTH-hybrid model, given a protocol
π that UC-realizes functionality F [BCL+05]. Specified here for two-party protocols.

1. Initialization

1. On input (Init, sid):
interpret sid = (s, {Alice,Bob}), let sid ′ = ((s, 1), {Alice,Bob}), send (Init, sid ′)
to sFMAUTH.13

2. On output (Init, sid ′, sidH) from sFMAUTH:
initialize πF with session identifier (sid, sidH) and output (Init, sid, sidH).

2. Computation

• On input (Input, sid, x):
send the input x to πF .

• On output y from πF : output y.

• When πF would send (Send, (sid, sidH),m) via FMAUTH:
instead send (Send, sid ′,m) to sFMAUTH.

• On output (Received, sid ′,m) from sFMAUTH:
send (Received, (sid, sidA),m) to πF (as if coming from FMAUTH).

A general construction ΠF was given in 2005 [BCL+05]. Given a protocol πF that
UC-realizes F in the (G,FMAUTH)-hybrid model, ΠF realizes a split functionality sF in the
G-hybrid model [BCL+05, Lemma 4.1]. The construction simply has the parties set up a
pseudo-authenticated channel sFMAUTH and then they run the protocol over that channel,
see Figure 4.7.

Split authentication can be implemented with the protocol πSA of Figure 4.8. Protocol
πSA UC-realizes sFMAUTH [BCL+10, Theorem 11]. Note that the computed sidH is used
internally to sign/verify messages, and it is also given as output when concluding the
intialization phase. Since sidH contains their own key that was generated randomly, each
party is guaranteed that it is globally unique with overwhelming probability, assuming the
space of verification keys is sufficiently large.

13The sid is changed to ensure sFMAUTH is not a main party.

122

Figure 4.8: Protocol πSA, UC-realizing sFMAUTH [BCL+05], adjusted for two-party proto-
cols.
Let (KeyGenS, Sign,Verify) be a signature scheme.

1. Initialization

1. On input (Init, sid):
interpret sid = (U, sid ′), generate signature keypair (sk, vk) and send message
(PubKey, sid, vk).

2. On message (PubKey, sid, vk′):
compute sidH = (vk, vk′) (or sidH = (vk′, vk), where the ordering is determined
by the order of parties in U), compute signature σ = Sign(sk, sidH) and send
message (Sig, sid, σ).

3. On message (Sig, sid, σ′):
if Verify(vk′, sidH , σ′) then accept, initialize a counter c := 0, and output
(Init, sid, sidH). Ignore the message if the signature is invalid.

2. Computation

• On input (Send, sid,m):
Compute signature σ = Sign(sk, (sidH ,m, c)), increment c, and send message
(Msg, sid, (m, c, σ)).

• On message (Msg, sid, (m, c′, σ)):
if c′ did not occur in a message received before, and Verify(vk′, (sidH ,m, c′), σ)
holds, record c′ and output (Received, sid,m). Ignore invalid messages.

123

2.9 Password authenticated key exchange

Password based key authentication is closely related to PAKE, which both take a low-
entropy shared secret as input, Whereas the former functionality just checks if the inputs
are equal, the latter also provides the users with a shared secret as output.

PAKEs are usually modelled with implicit authentication [BPR00; CHK+05]: both
users get a key as output from the protocol, but only if the authentication succeeded will
the keys be equal for both parties. Such a protocol can be transformed into a protocol with
mutual authentication (often called explicit authentication in the context of UC) by doing
key confirmation using a pseudo-random function (PRF). After getting output s from the
PAKE, Alice sends PRF(s, 1), Bob sends PRF(s, 2) and both output PRF(s, 0) if they
receive the expected value, or abort otherwise.

This immediately suggests we can use a PAKE with mutual authentication to realize
password based key authentication. Provide the public keys used in the AKE and shared
secret as input to the PAKE with mutual authentication. Reject the authentication if the
PAKE aborts, otherwise accept (the PAKE output PRF(s, 0) can simply be discarded).

While a PAKE is conceptually more complex than a equality test, many constructions
for them are known, including some based on post-quantum primitives [KV09; DAL+17;
TSJL21]. PAKEs are usually more efficient than the protocol we design in this chapter.
However, the goal was to construct a post-quantum solution based on the primitives from
the NIST standardization effort: KEMs and signatures. This means that we can work with
primitives and implementations that have been the focus of much of the post-quantum
cryptographic research in recent years.

3 Protocol

The protocol for key authentication is (a variant of) a PET, built in the OT hybrid model,
executed over a pseudo-authenticated channel. To realize the OT functionality with exist-
ing post-quantum key-agreement protocols, I take the construction of Masny and Rindal.
In Section 3.1 I discuss how I remove some of the sharp edges of their construction so that
it is simpler to implement securely.

The main contribution is given in Section 3.2: I loosen the functionality of a PET so
that corrupt parties can introduce a one-sided error, but only such that the output is still
meaningful for key authentication. I realize this by taking the protocol of [RR17], and
modifying it so it securely provides output to both parties.

124

Section 3.3 concludes this section by discussing how to execute the protocol over a
pseudo-authenticated channel to achieve a split equality test that is secure when computed
over unauthenticated channels.

3.1 Oblivious transfer

For the OT I use an existing construction by Masny and Rindal, based on KEX protocols
(and which can therefore be implemented with KEMs).14 There are significant differences
between their proceedings version [MR19] and their preprint version [MR21]: I will use the
preprint version (revised last at July 13, 2021) as the main reference, in which the mistakes
in the proofs that were found by others and myself have been corrected.

The formalization of the OT (FOT) is given in Figure 4.9. This describes a variant of
OT with outputs generated by the functionality, but where a malicious sender can choose
their own output. Note that FOT deviates from the Sender Chosen Message OT
(FS

OT) [MR21, Definition 2.4], which instead formalizes SFE (s[·], j) 7→ (∅, s[j]). Instead
it is closer to Endemic OT (FE

OT) [MR21, Definition 2.4]: a variant of SFE (∅, j) 7→
(s[·], s[j]), where both parties can bias their own output when malicious. Although these
formalizations are conceptually the same, technically they are incompatible, so Figure 4.9
can be seen as a minor correction. For example, the lemma that FS

OT (S)UC-emulates
FE

OT [MR21, Lemma 3.1] does not hold since no simulator exists when both parties are
honest. The proof of that lemma does however imply that FOT (S)UC-emulates FE

OT.

3.1.1 Existing protocol

The constructions require a 1-RTT uniform KEX protocol, shown in Figure 4.10 (see [MR21]
for definitions). The term 1-RTT means one message in each direction, while uniform means
that pk is indistinguishable from a random group element. In Figure 4.10 I used suggestive
names for the values and subroutines to correspond with a KEM, but other KEX protocols
such as DH are also allowed: then sk = x, pk = gx, ct = gy, and kB = gxy = gyx = kA. For
correctness, the probability that kA = kB must be overwhelming. Furthermore, the public
keys need to form a group with respect to some operator, which I will denote additively:

14The authors call this a key agreement protocol, but I will use key exchange (KEX) or key establishment
according to the terminology of [BMS20]. The term key agreement is used for protocols in which the output
shared key is a function of inputs of both participants (as opposed to key transport protocols, where the
key is generated by one party).

125

Figure 4.9: Ideal functionality FOT: 1-out-of-m OT between sender S and receiver R.
Parameters: the OT secrets have s[i] ∈ {0, 1}λ for 1 ≤ i ≤ m.
Each message (per sid) is only accepted once.

1. On input (InputR, sid, j) from R: verify that 1 ≤ j ≤ m, then record (sid, j).

2. On backdoor message (DeliverS, sid, s′[·]):
if S is corrupt: validate that s′[i] ∈ {0, 1}λ for 1 ≤ i ≤ m, then set s[·] := s′[·],
otherwise sample s[·] $← {0, 1}λm. Record (sid, s[j]) and output (OutputS, sid, s[·])
to S.

3. On backdoor message (DeliverR, sid): output (OutputR, sid, s[j]) to R.

Alice Bob

(pk, sk)← KeyGen()
pk

(kB , ct)← Enc(pk)
ct

kA := Dec(sk, ct)

Figure 4.10: 1-round trip time (RTT) KEX.

126

Sender Receiver (j)

(pk, sk)← KeyGen()
for i in {1, . . . ,m} \ {j}:
ri

$← G
rj := pk −Hj((r`)` 6=j)

r1, . . . , rm

for i in {1, . . . ,m}:
pki := ri +Hi((r`)` 6=i)
(s[i], cti)← Enc(pki)

ct1, . . . , ctm

s[j] := Dec(sk, ctj))

Figure 4.11: πOT: OT construction by Masny and Rindal [MR21].

(G,+).15 The authors provide an implementation of Figure 4.10 based on the round 1
version of Kyber.CPAPKE [ABD+17].

For 1-out-of-m OT, the protocol uses m random oracles Hi : Gm−1 → G. The protocol
(πOT) is shown in Figure 4.11: the receiver outputs s[j] and the sender outputs s[·].

Repairing the proof The protocol is secure if it SUC-emulates FOT. Instead the authors
give an incomplete definition for security: they require security only against a malicious
sender and against a malicious receiver [MR21, Definition 2.6]. For completeness the
passive adversary should also be considered.16 For security against the passive receiver the
protocol must be correct with overwhelming probability, otherwise the environment can
distinguish the real from ideal model via input/output of the honest parties. Against the
passive adversary, correctness of the OT protocol follows directly from the correctness of
the KEX protocol.

The authors recognize this necessity for correctness, but applied it in the wrong place.17

15Formally, a quasigroup (a group without associativity or identity) suffices. Furthermore, the public
keys can be a subset of the group G, as long as public keys cannot be efficiently distinguished from random
group elements. I will loosely use the term group as is done in the literature [BDD+17; MR19].

16Technically we should also consider the adversary corrupting both parties, but then simulation is trivial
as S can just run A who acts as both parties.

17This is corrected in the latest version.

127

Summarizing their work, they give the following definition for security against the malicious
sender:18 for all adversaries A there exists a simulator S such that for all environments Z
on auxiliary input z, the quantity

∣∣Pr[Z(z, (A,R)π) = 1]− Pr[Z(z, (S,FE
OT) = 1]

∣∣ (4.2)

is negligible. The authors state that (A,R)π is the joint output of A and honest receiver R
when running the protocol π, while leaving (S,FE

OT) unspecified. In the SUC framework
A has no output, so both probabilities are ill-defined. However the proof [MR19, Claim
4.2] used to suggest that Z is an interactive distinguisher and has all capabilities of the
environment in the SUC framework, so the above can be interpreted as some abuse of
notation. The reason I elaborate on this, is that the environment is made just a bit too
strong: it also directly sees the output of the ideal functionality, possibly as a result of the
above definition. The SUC environment does not see this: once a party is maliciously cor-
rupted it is deactivated,19 which is simulated by not delivering the output to the corrupted
dummy party. Their claim suggests a malicious sender can induce a security loss of (1− δ)
in case of a δ-correct KEX protocol, but this is not true.

The problem with requiring correctness in the presence of maliciously corrupted parties,
is that it cannot be guaranteed by many KEX protocols. For many post-quantum public
key encryption (PKE) schemes a malicious sender can send a maliciously crafted ciphertext
ct′ upon which decryption will either explicitly fail or decrypt to an incorrect value.

To summarize the above: the OT construction of Figure 4.11 is secure with the Ky-
ber.CPAPKE instantiation of Figure 4.10. In fact it is marginally more secure, because no
(1− δ) security loss can be induced by malicious parties.

There is another place where their protocol is actually stronger than their proof sug-
gests. The fixed UC proof for the malicious receiver [MR21, Appendix E.1] claims that the
KEM instantiation only achieves endemic security for the OT, while in fact the receiver has
no influence over the value s[j] and thus the protocol SUC-realizes FOT. More concretely,
note that the simulator of the proof of Claim E.1 samples a random value s[j] and sends
that as input to the ideal functionality. I suspect the authors were aware of this fact, since
they listed the KEM instantiation as achieving FS

OT in their benchmarks table [MR21,
Figure 10], despite never asserting this anywhere in the paper.20 This somewhat simplifies

18Security against a malicious receiver is defined similarly and has the same issues described in this
section.

19This deactivation is why the simulator must extract the effective input from the adversary in case of
static malicious corruption.

20Technically, the instantiation does not achieve FS
OT, but it does achieve FOT, as explained before.

128

my proof, although it should be noted that the endemic OT would be sufficient for this
work.

Selective failure attack The current specification implicitly assumes that subroutines
(specifically KeyGen, Enc, and Dec in Figure 4.10) never abort. Many cryptosystems do
abort upon incorrect input, which in the context of OT can lead to a selective failure
attack. If a malicious sender can send values cti such that Dec(·, cti) fails only on some of
them, then the sender can learn (partial information on) the receiver input j by observing
if the receiver aborts or not.

Take for example the instantiation based on DH, where the honest sender sends cti =
gyi . In reality the receiver does not receive a group element but receives a bytestring
which should represent a group element. The receiver must parse and validate the cor-
rectness of the incoming bytes, before they can generate the shared key. The seemingly
straightforward implementation, where the receiver selects the bytes of index j, parses
(possibly failing) and runs Dec, is therefore vulnerable. In this case there is a solution,
because validation operates on public information: the receiver could validate all incoming
bytestrings, before selecting the j-th one and running Dec. If any validation fails, the
receiver can abort securely, but note that some protection against side-channels is required
in the implementation.

The authors claim their construction results in endemic OT from many cryptosystems,
including McEliece [McE78], but in consideration of selective failure attacks this is not im-
mediate. Decrypting/decoding in the McEliece PKE cryptosystem can lead to a decoding
failure. The above countermeasure of validating all incoming bytestrings is no longer avail-
able, since decoding depends on the secret key. A possible fix is to output some other value
in case of a decoding failure. Any value will do, as long as the party does not abort. Note
that the KEM cryptosystem Classic McEliece [ABC+20] already does this by wrapping
the Fujisaki-Okamoto transform with implicit rejection (FO̸⊥) [HHK17] around the PKE
system. The transform applies to most PKE schemes and is in fact the construction used
by many post-quantum KEM schemes, therefore I prefer this countermeasure to prevent
selective failure attacks.

In principle a malicious receiver can send invalid values pk, so that Enc(pk) aborts.
However, the sender in πOT runs Enc on all received pki and has no secret input to leak,
so sender aborts will not lead to loss of security.

Implementation errors The DH-based construction of the main text [MR19] is not
implemented, instead an optimized version [MR21, Appendix D.2] is implemented [Rin21],

129

Sender Receiver (j)

r1−j
$← G

x
$← Z∗

q

rj := gx/Hj(r1−j)

y
$← Z∗

q

r0, r1

gy
for i in {0, 1}:
gxi := ri ∗Hi(r1−i)
s[i] := (gxi)

y
s[j] := (gy)

x

Figure 4.12: Optimization of DH based 1-out-of-2 OT construction by Masny and
Rindal [MR21]. (The group operations are written multiplicatively, but they fulfill the
same role as the operations of Figure 4.11.)

which is never mentioned in the proceedings version. The implementation contained a bug
that made that version insecure. The optimized version is shown in Figure 4.12, it allows
the sender to send only a single group element. Inspection of the source code reveals that
the implementation contained a bug:21 the random oracles were implemented as a hash
function without domain separation, so that effectively H0 = H1 = · · · = Hn−1. Without
proper oracle cloning [BDG20] the receiver can send r0 = r1 and thereby ensure that
s[0] = s[1]. The paper only provides a proof sketch under a custom variant of the decisional
DH (DDH) assumption for this optimized version. The post-quantum implementation of
πOT in libOTe does not properly clone the oracles either, which does mean the security
proof no longer applies, but in that case I have not been able to find an attack.

3.1.2 Quantum security

In the paper the authors claim to have built “the first implementation of a quantum resistant
OT” [MR21]. However, simply instantiating the protocol with post-quantum primitives
is not sufficient (see also Section 3.2.1) for achieving quantum resistance. One obstacle
towards proving quantum security is to consider security in the QROM. Without going
into too much detail, I describe why I believe such a proof to be non-trivial.

Adapting the proof for security against a maliciously corrupt sender should be possible.
In the proof, the simulator generates m keypairs (pki, ski) and m random group elements

21I have reported this to the authors, who fixed the issue straightaway: https://github.com/
osu-crypto/libOTe/commit/23106591573a478f3fa039ac938995a7a2ee3b2a.

130

https://github.com/osu-crypto/libOTe/commit/23106591573a478f3fa039ac938995a7a2ee3b2a
https://github.com/osu-crypto/libOTe/commit/23106591573a478f3fa039ac938995a7a2ee3b2a

ri, then programs the random oracle such that pki = ri + Hi((rℓ)ℓ̸=i) for all i, so that it
knows all secret keys and can extract the input. Since the oracle answers are independent
of earlier queries, this construction is history-free [BDF+11] and security in the QROM
should follow.

However the main difficulty lies in proving security against a corrupt receiver. The
simulator does not program the random oracle at all, instead it inspects the queries and
finds the one compatible with the received (r1, . . . , rm) to extract the input index j. In the
QROM, queries can be in superposition, so that in general inspection of the queries is not
possible without being detected by the environment. A QROM proof would thus have to
work around this difficulty, up to my knowledge there are no standard techniques known
for doing so.

3.1.3 Combined instantiation

At the moment of writing there exists ongoing debate about the concrete security of the
relatively young post-quantum cryptosystems. A benefit of basing the OT on KEX is
that there are straightforward methods for combining them: simply concatenate the KEX
outputs, and put them in a KDF. The resulting key will be secure as long as one of
its components are secure. Concretely, I will combine ECDH on the Goldilocks curve
with the lattice-based KEM Kyber [ABD+21]. The former allows us to use the Decaf
library [Ham15] already present in the OTRv4 codebase, while the latter uses liboqs [SM16].
In this combined solution, using the DH optimization of would not gain much, but it would
come at the price of a stronger cryptographic assumption, therefore I will not use it. Both
cryptosystems naturally induce group operations on the public keys, I further discuss these
when talking about the implementation.

3.2 Private equality confirmation

For key authentication, Alice and Bob hash their user identities, public keys, the OTR
session identity (not to be confused with the UC session identity) and their low-entropy
secret to get local inputs x and y, respectively. To confirm they are in the same session
(and thus there is no PITM) they could run a PET, expressed as the SFE (x, y) 7→ (Jx =
yK, Jx = yK). Both parties learn a single bit that indicates if their inputs are equal.

A weaker functionality suffices, as they only want to confirm that their values are equal:
they require “(the protocol output = 1) =⇒ x = y”, but not necessarily “(the protocol
output = 1) ⇐⇒ x = y”. To a degree, this is already encoded in the SUC framework with

131

Figure 4.13: Ideal functionality FPEC for private equality confirmation
Parameters: n is the fixed length of the honest inputs (x for Alice and y for Bob).

• On input (InputA, sid, x) from Alice: verify that x ∈ {0, 1}n, or if Alice is corrupt
verify x ∈ {∅} ∪ {0, 1}n, then record x.

• On input (InputB, sid, y) from Bob: verify that y ∈ {0, 1}n, then record y.

• When having received both InputA and InputB:
send public output (OutputB, sid, Jx = yK) to Bob.

• On backdoor message (DeliverA, sid, b):
Ignore if no OutputB was given before.
If Bob is corrupt, send private output (OutputA, sid, bJx = yK) to Alice,
otherwise send private output (OutputA, sid, Jx = yK) to Alice.

unfairness : one party can always abort to prevent the other party from receiving output.
We can allow the adversary slightly more power: both corrupt Alice and corrupt Bob are
allowed to force the output of the other party to be zero. A corrupt Alice can input a value
∅, with ∅ ̸= y for all y ∈ {0, 1}n (this corresponds to the fact that Alice can input subsets
in the private set intersection (PSI) protocol on which this protocol is based [RR17]). Bob
is given slightly more power: he can change Alice’s output to zero after having received
output himself. I call the resulting functionality a private equality confirmation (PEC): a
formal definition FPEC is given in Figure 4.13.

We base our solution on OT, but also require a function G that is one-way and pseu-
dorandom:

Definition 4.3. A function g : {0, 1}∗ → {0, 1}∗ is one-way if

1. there exists a deterministic polynomial time algorithm G, that on input x outputs
g(x).

2. for every PPT adversary A and polynomial p, there exists a λ0 ∈ N such that for all
λ > λ0 and for all z ∈ {0, 1}∗ with |z| ∈ poly(λ):

Pr[A(g(Uλ), z) ∈ g−1g(Uλ)] <
1

p(λ)
, (4.3)

where Uλ is a random variable uniformly distributed over {0, 1}λ.

132

I will leave the first property implicit and directly write G from here on.

Definition 4.4. A deterministic polynomial time algorithm G : {0, 1}λ → {0, 1}λ is pseu-
dorandom if for all PPT algorithms D, and every polynomial p, there exists a λ0 ∈ N such
that for all λ > λ0 and all z ∈ {0, 1}∗ with |z| ∈ poly(λ):

∣∣∣ Pr
r∈{0,1}λ

[D(G(r), z) = 1]− Pr
r∈{0,1}λ

[D(r, z) = 1]
∣∣∣ < 1

p(λ)
. (4.4)

Which essentially states that G is a pseudorandom generator, but without any expan-
sion.

Formally, the SUC protocol description of πPEC requires additional information about
the state management to ensure the correct ordering of messages. For this specific protocol,
both parties should accept input just once, accept output from the OT once per index i,
and must execute the enumerated steps in order: Alice must ignore any MsgBob message
until having sent MsgAlice, Bob must ignore any MsgAlice message until having computed
both α(y) and β(y). Technically, each party should halt activation directly after sending
a message (this includes input to FOT and output to the environment), and they can only
resume computation upon explicit activation by the next message. Parties can enforce this
by ignoring all activations other than receiving an empty continuation message from the
adversary.

Protocol πPEC of Figure 4.14 realizes FPEC by running 2n executions of FOT. It is
essentially the protocol of Section 2.4, with a one-way function G. We use the shorthand
notation α(x) =

⊕n
i=1Ai[x] (and similarly β(x) =

⊕n
i=1B[x]). Intuitively the protocol is

secure: in order to construct the message mA that Bob accepts, Alice has to know β(y).
If x ̸= y, there is at least one xi ̸= yi, so that Bi[yi] is random to her and so is β(y).
Similarly Bob must know α(x) to construct mB. The one way function G ensures that
it does not leak to him through mA. This intuitive security argument is formalized in
Theorem 4.5. The proof is structured like that of the dual-execution protocol by Rindal
and Rosulek [RR17].

Theorem 4.5. Protocol πPEC SUC-realizes FPEC in the FOT-hybrid model.

Proof. We consider three cases: both parties are honest, Alice is corrupt, or Bob is corrupt.
Technically there is a fourth case where both parties are corrupt, but simulation is trivial
in that case.

133

Figure 4.14: Protocol πPEC, SUC-realizing FPEC in the FOT-hybrid model. Formal state
management to ensure correct ordering of messages is omitted from the description, see
text for further details.
Parameters: n is the length of the inputs in base m.
Functionality FOT is the 1-out-of-m OT functionality with outputs in {0, 1}λ.
Function G : {0, 1}λ → {0, 1}λ is pseudorandom and one-way.

1. Interaction with the OT functionality:

• On input (InputA, sid, x) to Alice, let x = x1x2 . . . xn in base m.
For i = 1 to n:

send (InputR, (sid, 0, i), xi) to FOT.

• On input (InputB, sid, y) to Bob, let y = y1y2 . . . yn in base m.
For i = 1 to n:

send (InputR, (sid, 1, i), yi) to FOT.

• On output (OutputS, (sid, 1, i), Ai[·]) to Alice:
record Ai[xi]. If n outputs are received, compute α(x) =

⊕n
i=1Ai[xi].

• On output (OutputR, (sid, 0, i), Bi[xi]) to Alice:
record Bi[xi]. If n outputs are received, compute β(x) =

⊕n
i=1Bi[xi].

• On output (OutputR, (sid, 1, i), Ai[yi]) to Bob:
record Ai[yi]. If n outputs are received, compute α(y) =

⊕n
i=1Ai[yi].

• On output (OutputS, (sid, 0, i), Bi[·]) to Bob:
record Bi[yi]. If n outputs are received, compute β(y) =

⊕n
i=1Bi[yi].

• When Alice has computed both α(x) and β(x):
send message (MsgAlice, sid, mA = G(α(x))⊕ β(x)) to Bob.

2. On message (MsgAlice, sid, mA) to Bob:
Let z = JmA = G(α(y)⊕ β(y))K, give public delayed output (OutputB, sid, z).

Let mB =

{
Reject if z = 0

α(y)⊕ β(y) if z = 1

Send (MsgBob, sid, mB) to Alice. Halt.

3. On message (MsgBob, sid, mB) to Alice:
give private delayed output (OutputA, sid, JmB = α(x)⊕ β(x)K). Halt.

134

Two honest parties When both parties are honest, the simulator S operates as
follows for an adversary A.

Instruct the router to deliver the input from dummy Alice and Bob to FPEC. Internally
simulate the interaction of real-model Alice and Bob with the OTs by sending the private
delayed input/output messages that A would see (devoid of any content). Set α, β $←
{0, 1}λ. Internally simulate Alice sending (MsgAlice, sid, G(α) ⊕ β) to Bob. If A would
instruct the router to deliver this message, inspect public output (OutputB, sid, Jx = yK),
and instruct the router to deliver this output to (dummy) Bob. If x ̸= y, set mB :=

Reject, otherwise set mB
$← {0, 1}λ, then simulate Bob sending (MsgBob, sid, mB) to

Alice. If A would instruct the router to deliver this message, send backdoor message
(DeliverA, sid, 1) to FPEC and instruct the router to deliver the output to Alice.

The simulator is valid, for it provides an identical view to the adversary/environment,
except for the event that real-model Bob erroneously accepts, but that only occurs with
negligible probability. In more detail, by the properties of the OT, α(x) and β(x) in the
real-model execution are both uniformly random and are thus distributed identically to α
and β in the ideal-model and therefore MsgAlice is distributed identically in both models.
If x = y then both in the real model Alice and Bob accept, and MsgBob is again identical in
both protocols. Otherwise if x ̸= y then ideal-model Bob will reject, while real-model Bob
might accept. However, if x ̸= y, there is at least one xi ̸= yi, so that for real-model Bob:
Pr[z = 1] = Pr[Bi[xi] = Bi[yi]] = 2−λ. Thus he erroneously accepts only with negligible
probability, and since Alice accepts only if Bob does, the probability that her output is
wrong is also negligible.

Corrupt Alice Next we consider static malicious corruption of Alice: for any real-
model adversary, define the ideal-model simulator SA as follows:

1. Extract x′, and α(x′) from the adversary’s interaction with FOT. For 1 ≤ i ≤ n,
get (InputR, (sid, 0, i), x′i), and (DeliverS, (sid, 1, i), Ai[·]) from the adversary. Let
Bi

$← {0, 1}λ, and send (OutputR, (sid, 0, i), Bi) and (OutputS, (sid, 1 i), Ai[·]) to
the adversary. Let α(x′) =

⊕n
i=1Ai[x

′
i] and β =

⊕n
i=1Bi. Abort if any FOT aborts.

2. On adversary message (MsgAlice, sid, mA): compute z′ = JmA = G(α(x′)) ⊕ βK. If
z′ = 0 set x = ∅, otherwise set x = x′. Send (InputA, sid, x) and (DeliverA, sid, 1) to
FPEC.

3. On (OutputA, sid, Jx = yK) from FPEC: if x ̸= y, send (MsgBob, sid, Reject) to the
adversary, otherwise send (MsgBob, sid, α(x′)⊕ β).

135

To show this is a valid simulator, we consider a sequence of hybrids. Each hybrid is like an
ideal-model simulator (relative to a fixed real-model adversary), but with the additional ca-
pabilities to read the input and set the output of the honest party directly. For each hybrid
I describe the modification to the previous hybrid, and then prove that the modification is
indistinguishable for the environment (by proving that the inputs to the environment are
indistinguishable). The first hybrid ensures the inputs to the environment are identical to
those in the real-model, while the last hybrid is identical to the ideal-model simulator SA.

Hybrid 0. The hybrid semi-honestly runs FOT and runs the code of honest Bob in πPEC ,
getting the input y from the dummy party and setting its output to the output of honest
Bob’s code. Note that the hybrid can observe the adversary messages x′, and Ai[·]. This
hybrid trivially provides identical inputs to the environment as the real-model interaction.

Hybrid 1. This hybrid removes Bob’s interaction with the OTs. Compute α(y) directly
from the observed Ai[·]. Let Bi[·] $← {0, 1}λm and send (OutputR, (sid, 0, i), Bi[x

′
i]) to the

adversary. By the guarantees of the OT functionality, the output to the adversary remains
identical, thus hybrids 0 and 1 are indistinguishable.

Hybrid 2. Extract Alice’s effective input x directly from x′ and mA: Let z′ = JmA =
G(α(x′)) ⊕ β(x′)K: if z′ = 1 set x = x′, otherwise set x = ∅. If x ̸= y, set mB = Reject,
otherwise set mB = α(x′) ⊕ β(x′). Send mB to the adversary and set Bob’s output to
Jx = yK.

If x′ = y, then G(α(x′))⊕ β(x′) = G(α(y))⊕ β(y), so that z′ (in hybrid 2) is equal to z
(in hybrid 1). If z′ = 0, then Bob rejects (with output zero and message Reject) in both
hybrids, otherwise z′ = 1 and x = x′, so that Bob accepts in both hybrids (with output
one and message α(x′)⊕ β(x′) = α(y)⊕ β(y)).

If x′ ̸= y, then x ̸= y (independent of the value of z′) and Bob rejects in this hybrid.
However in hybrid 1 Bob might have erroneously accepted. Since at least one Bi[yi] is
random for the adversary, the probability that the adversary sent a value mA that Bob
accepted is 2−λ and thus the hybrids are statistically indistinguishable.

Hybrid 3. Hybrid 2 only uses Bi[xi] out of the array Bi[·], so it may as well generate only
that value. Let Bi

$← {0, 1}λ and use Bi where hybrid 2 used Bi[x
′
i]. Write β = β(x′) to

highlight that its value is independent of x′. This change is only cosmetic so this hybrid is
identical to hybrid 2.

Hybrid 4. Instead of setting the output of dummy Bob directly, do so indirectly by sending
(InputA, sid, x) to FPEC. This also ensures that the hybrid learns Jx = yK from the OutputA
message, to be able to construct Bob’s final message. The hybrid no longer requires access
to the input of dummy Bob, while the correctness of FPEC guarantees the output of dummy

136

Bob is identical to that of hybrid 3. Therefore this is a valid ideal-model simulator, and in
fact it is identical to SA.

Corrupt Bob Finally we consider static malicious corruption of Bob: For any real-
model adversary, define the ideal-model simulator SB as follows:

1. Extract y, and β(y) from the adversary’s messages to FOT. For 1 ≤ i ≤ n, get
(DeliverS, (sid, 0, i), Bi[·]), and (InputR, (sid, 1, i), yi) from the adversary. Let
Ai

$← {0, 1}λ, and send (OutputR, (sid, 1, i), Ai) and (OutputS, (sid, 0, i), Bi[·]) to
the adversary. Let β(y) =

⊕n
i=1Bi[yi] and α =

⊕n
i=1Ai. Abort if any FOT aborts.

2. Send (InputB, sid, y) to FPEC and receive (OutputB, sid, Jx = yK). If x = y, set
mA = G(α) ⊕ β(y), otherwise let mA

$← {0, 1}λ. Send (MsgAlice, sid, mA) to the
adversary.

3. On (MsgBob, sid, mB) from the adversary, let b = JmB = α⊕ β(y)K. Send (DeliverA,
sid, b) to FPEC.

Again we define a sequence of hybrids to prove indistinguishability.

Hybrid 0. The hybrid runs the code of honest Alice with the input x of dummy Alice,
and semi-honestly runs FOT. This hybrid is trivially indistinguishable by the adversary.

Hybrid 1. This hybrid removes Alice’s interaction with the OTs. Compute β(x) directly
from the observed Bi[·], and send (OutputR, (sid, 1, i), Ai[xi]) to the adversary. The output
to the adversary remains identical, thus hybrids 0 and 1 are indistinguishable.

Hybrid 2. Output (OutputA, sid, JmB = α(y)⊕ β(y)KJx = yK) for Alice.

If x = y the output remains identical. Otherwise, if x ̸= y, hybrid 2 outputs zero while
hybrid 1 outputs JmB = α(x)⊕β(x)K, which might be one. By the difference lemma [Sho04],
the distinguishability of the hybrids is thus bounded by Pr[mB = α(x) ⊕ β(x) | x ̸= y] in
hybrid 1.

Assume to the contrary there exists an environment Z and input (z, 1λ) so that Z
replies with such an mB with high probability: there exists a polynomial p such that for
infinitely many λ:

Pr[mB = α(x)⊕ β(x) | x ̸= y] ≥ 1/p(λ). (4.5)

Then there exists an algorithm Z ′ that finds a preimage of G. On input X = G(Uλ) and
z, algorithm Z ′ invokes Z(z, 1λ) and runs hybrid 1, but sends mA = X ⊕ β(x) instead of

137

G(α(x))⊕β(x). Let mB be the reply by Z, then Z ′ outputs mB⊕β(x). Since x ̸= y, there
is at least one xi ̸= yi so that

⊕
iAi[xi] contains at least one uniform term and is therefore

α(x) is a uniform random value. Thus X and G(α(x)) are distributed identically and so
is mA. Then

Pr[Z ′(G(Uλ), z) ∈ G−1G(Uλ)] ≥ Pr[Z ′(G(Uλ), z) = Uλ] ≥ 1/p(λ), (4.6)

contrary to the assumption that G is one-way. Thus such a Z cannot exist, proving that
hybrid 1 and 2 are indistinguishable.

Hybrid 3. If x = y, send mA = G(α(y))⊕ β(y), otherwise (if x ̸= y) send mA
$← {0, 1}λ.

If x = y, then mA remains identical. Otherwise, if x ̸= y, then the environment cannot
distinguish the hybrids by the pseudorandom property of G.

Assume to the contrary that there exists an environment Z that on input (z, 1λ) sets
x ̸= y and distinguishes hybrids 2 and 3. Since x ̸= y, α(y) is uniformly random. Thus by
assumption there exists a polynomial p such that for infinitely many λ:

|Pr[Z(G(Uλ)⊕ β(x), z, 1λ) = 1]− Pr[Z(Uλ, z, 1
λ) = 1]| ≥ 1

p(λ)
. (4.7)

Then we can build a distinguisher D. D has oracle access to O, which either samples from
G(Uλ) (denoted OG), or samples from Uλ (denoted OU). Let r $← O, then D runs hybrid 2,
but it outputs mA = r⊕β(x) and it outputs whatever Z outputs. Then DOG is distributed
identical to hybrid 2 and DOU is distributed identical to hybrid 3. Thus

|Pr[DOG(z, 1λ) = 1]− Pr[DOU (z, 1λ) = 1]|

= |Pr[Z(G(Uλ)⊕ β(x), z, 1λ) = 1]− Pr[Z(Uλ ⊕ β(x), z, 1λ) = 1]| ≥ 1

p(λ)
.

(4.8)

contrary to the assumption that G is pseudorandom. Thus the distinguisher between
hybrid 2 and 3 cannot exist.

Hybrid 4. Generate only Ai = Ai[yi] for all i. This is the same change as hybrid 3 for
corrupt Alice.

Hybrid 5. Replace direct interaction with dummy Alice with interaction via FPEC: send
(InputB, sid, y) to FPEC to get (OutputB, sid, Jx = yK), and construct MsgAlice accordingly.
On (MsgBob, sid, mB), send (DeliverA, sid, JmB = α ⊕ β(y)K) to FPEC to ensure dummy
Alice gets output. This is the valid simulator SB described earlier.

138

Note that the above proof could be adjusted to work for a protocol where Bob sends α(y)
as MsgBob if he accepts. The reason he sends α(y)⊕β(y) instead is that an implementation
might contain a bug and sends this value when rejecting. If x ̸= y, the message α(y) leaks
y to a corrupted Alice, while α(y)⊕β(y) does not. The impact of such an implementation
error is therefore less severe.

Let π′
PEC be the protocol πPEC, as transformed by the SUC protocol transformation

(messages are sent via FMAUTH instead of via the router). Let F ′
PEC be the functionality

FPEC as transformed by the SUC functionality transformation (the same functionality with
explicitly delayed input/output). Then Theorem 4.5 implies that π′

PEC UC-realizes F ′
PEC

in the FOT-hybrid model. And by the UC theorem we have the following corollary:

Corollary 4.6. Protocol π′
PEC UC-realizes F ′

PEC in the (FRO,FMAUTH)-hybrid model.

3.2.1 Quantum security

Simply instantiating the used primitives with post-quantum primitives does not automati-
cally make the protocol secure against quantum adversaries. We follow [HSS11] and define
quantum-UC-emulation as normal UC-emulation with two changes: the PPT environment
and adversary are replaced with a polynomial time quantum adversary and the classical
advice z is replaced with quantum advice: polynomially many qubits with arbitrary state.
It should be noted that the quantum variant of the UC-theorem still holds.

The security proof for honest parties and for corrupt Alice does not depend on compu-
tational arguments, but instead gives statistical indistinguishability between the real model
and ideal model, so that computational indistinguishability against quantum adversaries
is immediate.

For the security proof for corrupt Bob, we strengthen the assumptions on G by making
the same changes: we assume the one-way property and pseudorandomness hold against
all quantum polynomial time adversaries on any quantum advice. Although we made two
changes to be explicit, all we did was change the adversary computational power, from
P/poly to BQP/qpoly. Stated in terms of [Son14]: this is the game-preserving case.

Security for the quantum case then follows by the quantum lifting theorem for game-
preserving reductions [Son14]. To show it applies we simply remark that both reductions
are black-box and straight-line.

139

3.3 Split private equality confirmation

The implemented protocol ΠF ′
PEC

applies the general split transformation (see Figure 4.7)
in order to execute π′

PEC over a pseudo-authenticated channel. This realizes sF ′
PEC: the

split functionality (see Figure 4.6) of F ′
PEC.

Recall that in the transformation ΠF ′
PEC

, relies on split authentication (sFMAUTH). I
realize this with the signature based protocol πSA (see Figure 4.8). In order to achieve post-
quantum security, I instantiate those signatures with post-quantum signatures. Note that
the security proof of this construction is a simple hybrid argument that reduces its security
to the existential unforgeability under chosen message attack (EUF-CMA) property of the
signature scheme [BCL+10, Lemma 4.1]. Post-quantum security thus follows directly from
the quantum lifting theorem [Son14].

The resulting functionality sF ′
PEC is more complex than a simple PET, but it still

suffices in the context of key authentication as done in OTR. Using a PEC instead of a
PET does not change the conclusion of honest parties: if a party receives output 0, then
the input was unequal because of independent inputs or the other party was corrupt and
was tampering with the PEC itself, but either way the party should not accept the OTR
session.22 Having delayed input/output just means that the adversary can always make
honest parties abort and reject. Finally the split functionality means that the adversary
gets a (single) attempt to impersonate the other party (per honest party), but even then
they cannot make the other party accept without providing the correct shared secret input.

Note that one of the motivating use cases for developing split functionalities was to
simplify the design of PAKEs [BCL+05]. The authors suggest a functionality FPW that
takes low-entropy inputs and outputs a high-entropy shared key to both parties if the
inputs were equal, or ⊥ otherwise, so that the split variant sFPW is essentially equal to
the standard UC PAKE functionality [CHK+05]. The most important distinctive feature
of that construction is that it provides the resulting session key as output, instead of only
providing the authentication itself. The advantage of the functionality of this chapter
is that it neatly separates AKE from key authentication. Specifically in the use case of
OTR, instead of having to design an AKE that is both deniable and based on passwords,
the AKE design can focus on deniability (and other required properties), while the key
authentication protocol can be based on passwords, as long as it does not directly break
deniability itself. Offline deniability of ΠF ′

PEC
follows directly from the fact that it uses

22Unequal inputs could be the result of an honest user providing the wrong input. Cryptography cannot
protect against this user error, but it does limit the number of adversarial guesses to the number of times
the honest party is willing to retry the entire protocol.

140

only ephemeral keys, while online deniability holds by the fact that authentication is based
on a shared secret value.

3.3.1 Split authentication

It should be noted that using protocol πSA for realizing sFMAUTH could be superfluous
in the context of OTR. Generally it would seem that an AKE with unauthenticated keys
already provides the parties with a pseudo-authenticated channel: the AKE output can
be used to setup a secure channel using symmetric cryptography. Honest parties using
this channel know they communicate with the owner of the static key that was used in
the AKE. Intuitively that makes sense, but there are a few choices that were made in the
current model of the OTR AKE that make proving such a statement non-trivial.

The OTRv4 handshakes are modelled in the UC framework as custom AKE function-
alities (with additional properties such as deniability) [Ung21]. The functionalities and
their realizing protocols are implemented relative to a PKI functionality. Since the goal of
key authentication is to replace such a PKI, we cannot assume its existence. Instead we
have to run the protocol with a public key provided by the adversary, in which case some
adjustments to the current model (both the functionalities and the protocol) are required.

Another issue is that both AKE functionalities use a standard trick from UC KEX mod-
els [CK02]: a corrupt party is allowed to choose the resulting output of the key exchange.
In many KEX protocols, the responding party has some small influence over the output:
they can compute a few candidates as their share of the KEX and then select the one that
gives an output with a desirable property. The ideal functionality gives the corrupt party
significantly more influence over the output (recall that to UC-realize a functionality, a
protocol must be at least as secure the functionality). The problem when trying to realize
sFMAUTH with such a functionality is that the adversary can split the parties in disjoint
subsets and run two AKEs with equal outputs, which means that the subsets are not
cleanly separated and messages from one subset might be accepted in another subset. This
appears to be an artifact of the model, not a problem in the protocol itself: a functionality
that guarantees that KEX outputs do not collide if at least one party is honest would be
sufficient for this specific problem, but it is not immediately clear how to formalize such a
requirement in the UC framework.

We leave the realization of split authentication directly with the AKE as future work.
Note that as a result, the current key authentication protocol is not required to be exe-
cuted in-band. An in-band implementation may provide an improved user experience (as
discussed in Section 2.2).

141

4 Implementation

The available implementation of ΠF ′
PEC

collapses as many protocol steps as possible into
one step. Practically that means that we get a 3-RTT protocol, summarized here.

1. Alice to Bob: (Msg1, vkA),
where vkA is the public key of freshly generated signature keypair (skA, vkA).

2. Bob to Alice: (Msg2, vkB, σ2),
where vkB is the public key of freshly generated signature keypair (skB, vkB). Let
sid = (vkA, vkB), and σ2 = Sign(skB, (Msg2, sid)).

3. Alice to Bob: (Msg3, m3, σ3),
Let sid = (vkA, vkB). Initialize n OTs as receiver, resulting in message m3. Compute
σ3 = Sign(skA, (Msg3, sid,m3)).

4. Bob to Alice: (Msg4, m4, σ4).
Execute nOTs as sender (with output β(y)), and initialize nOTs as receiver, resulting
in message m4. Compute σ4 = Sign(skB, (Msg4, sid,m4)).

5. Alice to Bob: (Msg5, m5, mB, σ5).
Complete n OTs as receiver (with output β(x)), execute n OTs as sender (with
output α(x), resulting in message m5. Let mA = G(α(x)) ⊕ β(x)). Compute σ5 =
Sign(skA, (Msg5, sid,m5,mA)).

6. Bob to Alice: (Msg6, m6, σ6).
Complete n OTs as receiver (with output α(y)), resulting in message m6. Accept iff
mA = G(α(y)) ⊕ β(y), and compute mB accordingly (see πPEC, step 2). Compute
σ6 = Sign(skB,Msg6, sid,m6,mB)).

7. Alice.
Accept iff mB = α(x)⊕ β(x)

Each message is accepted only once and in order, messages with invalid signatures are
ignored. The local session identifier sid is computed in steps 2 and 3. It is used for
executing π′

PEC, where it is used to ensure that each random oracle (m oracles per OT)
is domain-separated with a globally unique identifier. The message counters Msg1. . . Msg6
are single byte counters.

A functional C99 prototype of ΠF ′
PEC

is available as the libkop library [Ver21], where
KOP stands for “(KEM-based OT)-based PEC”. The implemented KEM is the combined

142

instantiation of Section 3.1.3, πOT (Figure 4.11) realizes the OT functionality, and the PEC
is realized by πPEC (Figure 4.14). Since we rely on existing libraries for implementing the
primitives, the code is simple and small: approximately 3500 lines of code which includes
tests and benchmarks.

DH fits the formulation of a KEM with implicit rejection as follows. Given an encoding
function E : G → B∗ and a parser P : B∗ → G ∪ {⊥} that can explicitly fail, define

P ′(b) :=

{
P(b) if P(b) ̸= ⊥
g if P(b) = ⊥, (4.9)

where g ∈ G is the standard generator. For a given keypair (E(gx), x), encapsulation
generates c = E(gy) and shared secret gxy. Decapsulation then outputs (P ′(c))x, which
equals gx when decapsulation (implicitly) fails.

Using KEMs lets us use the standard interface as exposed by available libraries, as
long as we take care to use a KEM where decapsulation never explicitly fails. Using a
publicly available library has the advantage that including upstream updates is cheap:
this covers minor specification updates, security patches and performance improvements.
The prototype implements ECDH via the Decaf library [Ham15] with Kyber [BDK+18;
ABD+21] via the liboqs library [SM16]. Symmetric cryptography uses the Keccak primi-
tives [BDPA13] via the XKCP library [XKCP]. The signatures use the Dilithium primitive
as implemented in liboqs [SM16]. I chose Decaf and Keccak for compatibility with the
existing OTRv4 specification and Kyber and Dilithium for post-quantum security with an
OT implementation already available.

Decaf public keys form a prime-order group of points on the Ed448 (Goldilocks) elliptic
curve with fast complete addition laws. The Elligator map hashes bytestrings (B112) to
Decaf points, which allows both sampling random group elements (apply Elligator to a
random bytestring) and realization of the random oracle (hash the group elements to a
bytestring and then apply Elligator).

The group of Kyber public keys is that of [MR21], with minor efficiency improvements.
A Kyber public key is a pair (t, ρ) ∈ Rk

q × B32, where Rq is the ring Zq[X]/(Xn + 1),
q = 3329, and k is 2, 3, or 4 (depending on the security level). The group operation is
then defined as (t0, ρ) + (t1, ρ) = (t0 + t1, ρ), with the usual addition in Rk

q . As a minor
improvement over libOTe, I avoid packing and immediately unpacking public keys for these
group operations. Although we could include addition of ρ in the group operation (for
example using the ⊕ operation), this leads to a potential vulnerability when considering
timing side-channels (discussed later). Instead ρ is kept constant per OT, generated by
the Kyber key-generation.

143

In Kyber the seed ρ is expanded with an extendable-output function (XOF), then
using the rejection-sampling subroutine Parse, a random element Rq is generated. This is
repeated k2 times to generate a matrix A ∈ Rk×k

q . Using the XOF and Parse subroutines
we can generate a random public key and implement the random oracles. The libOTe
implementation generates the entire matrix and discards all but the first row, while my
implementation only generates one vector.

The default parameter set for protocol πOT sets m = 2: implementing 1-out-of-2 OT.
The Kyber KEM has relatively large public keys and ciphertexts, so I focus on minimizing
the size of messages. Note that the message size is identical for two 1-out-of-2 OTs and
one 1-out-of-4 OT: four public keys and four ciphertext per two bits of the input. The
measured performance for m = 2 is better, despite the fact that m = 4 requires fewer
public-key operations for the receiver.

We apply domain separation by prefixing (“KOP-RO”, sid, irole, iOT, iRO) to each hash
call: “KOP-RO” is a system constant, sid is the concatenation of the ephemeral verification
keys, the index irole ∈ {0, 1} indicates who is the oblivious transfer sender, the index
0 ≤ iOT < σ indicates the OT, and index 0 ≤ iRO < n indicates the random oracle in πOT.

The default parameter set assumes 80-bit inputs, so that n = 80 with the default 1-
out-of-2 OT. The KEM keys are combined with a KDF, instantiated as SHAKE256(“KOP-
KDF”∥kec∥kpq), so that λ = 256. The function G(x) is instantiated as SHA3-256(“KOP-
PEC-G”∥x).

A limitation of the analysis in Theorem 4.5 is that it says nothing about the required size
of the security parameter: it is non-tight due to the quantum lifting and requires stronger
primitives than are realistically necessary due to the non-uniformity [KM12]. All security
parameters have instead been chosen to be sufficiently large to withstand cryptanalysis by
uniform (quantum) adversaries on the primitives.

4.1 Side-channel protection

In the OT, the receiver input j must not leak in any way. As a minimal protection against
side-channel attacks, the implementation does not branch upon secret data and does not
use secret memory indices. This protection is built into the libraries we use, but here I
highlight the additional protection provided by the implementation.

• Implicit rejection in DH decoding uses a constant time select function built into the
Decaf library.

144

• In generating the first OT message, the receiver always computes on the memory
layout [rj, r0, . . . , rj−1, rj+1, . . . , rn−1], then puts element rj in its correct place with
(n− 1) constant time conditional swaps.

• Upon receiving the last OT message, the receiver selects the j-th ciphertext and only
parses/decapsulates that one. The selection uses conditional moves and runs in time
independent of the value of j.

• The OT sender receives m secrets, but requires only one. The required is selected in
constant time by a series of conditional moves.

• As mentioned earlier, the Kyber public key contains a seed ρ, that is then (deter-
ministically) expanded with a XOF and then turned into an element of Rq with the
(non-constant time) rejection sampling subroutine Parse. If we would vary ρ for dif-
ferent group elements in the OT, a corrupt sender could check which received value
of ρ matches the time taken to construct the first message. The OT receiver only
expands one seed (during key generation) and does not expand the seed for randomly
generated group elements. Different OTs can have different values of ρ, so we take
the value ρ generated by the Kyber key generation and then ensure that the random
sampling, random oracle, and group operations keep that value of ρ constant.

The signature implementation operates on bytes and requires no additional side-channel
protection (beyond what is already provided by the library).

4.2 Measurements

With Decaf both KEX messages are 56 bytes. Kyber and Dilithium both come with
different parameter sets, targeting NIST PQC security levels 1, 3, and 5 [NIST17]. Kyber
has public key sizes of 800, 1184, and 1568 bytes, and ciphertexts of 768, 1088, and 1568
bytes, respectively. Dilithium has public key sizes of 1312, 1952, and 2592 bytes, and
signatures of 2420, 3293, and 4595 bytes, respectively. Conservatively choosing the highest
security level and 32-byte oblivious encodings, the six messages thus have sizes 2593, 7188,
1624mn+4596, 3248mn+4596, 1624mn+4628, and 4628 bytes, Thus with 1-out-of-2 OT
and 80-bit inputs, just over a megabyte of messages is transferred in total. In OTR, some
small overhead in both message size and runtime will be introduced if the messages are
sent over the established secure channel.

The results are reported in Tables 4.1 and 4.2. Measurements were performed on an
Intel Core i5-8265U (Whiskey Lake) clocked at 1.6GHz, with TurboBoost (overclocking),

145

Table 4.1: Performance of 1-out-of-m OT: mean runtime and standard deviation in µs.
m 2 4 8 16

ot_recv_init 358± 2 588± 3 1059± 5 1980± 8
ot_send 1159± 2 2383± 3 5047± 3 11 450± 50
ot_recv_out 366± 1 366± 1 367± 1 368± 1

Table 4.2: Performance of ΠF ′
PEC

on various input sizes: mean runtime and standard
deviation in ms. Implemented with 1-out-of-2 OT. The input size |x| is the number of bits
in x.

|x| 40 80 128 256

alice_m1 0.164± 0.002 0.164± 0.002 0.165± 0.002 0.17± 0.02
bob_m2 0.5± 0.1 0.5± 0.1 0.5± 0.1 0.5± 0.1
alice_m3 15.6± 0.1 31.5± 0.4 48.4± 0.2 96.3± 0.2
bob_m4 63.7± 0.2 128.4± 0.2 202.3± 0.3 404± 1
alice_m5 64.0± 0.2 128.2± 0.1 203.7± 0.2 406.9± 0.2
bob_m6 15.9± 0.2 31.2± 0.4 49.6± 0.2 98.7± 0.2

146

hyperthreading, and underclocking disabled. For a reference point, we measured the com-
bined KEM on the same system at: keygen 104µs, encaps 438µs, and decaps 364µs. On
this specific system, TurboBoost increases the clockspeed to 3.9GHz, which means that
the reported runtimes can trivially be cut in half. Although I expect that the relative
infrequent use of the protocol (at least in the context of OTR) means that a real-world
deployment can take full advantage of TurboBoost, I decided to report the results without
TurboBoost for increased reproducability.

5 Discussion

This work gives a solution to the key authentication problem in secure messaging protocols
based on post-quantum primitives. Most popular secure messaging applications solve this
problem out-of-band, but OTR provides an in-band solution in the form of the SMP, a
solution to the socialist millionaire problem, but which is not secure against quantum
adversaries.

I provide a solution in the form of a PET that allows for a one-sided error in its
output when either of the parties is malicious. The protocol uses OTs as a building block.
Although any post-quantum OT will suffice, we chose one that can be constructed out of
KEX protocols. This means it can be built out of post-quantum KEMs. The entire protocol
is executed over a pseudo-authenticated channel, which is realized from post-quantum
signatures. The underlying cryptography and implementations of these post-quantum
primitives have been under scrutiny of many cryptographers. The KEM construction is
realized with a hybrid solution: the output of a post-quantum KEM and a pre-quantum
KEM are hashed together, so that the overall protocol is secure as long as one of the KEMs
is secure.

A mathematical argument towards the security of the protocol has been provided,
by proving that the PEC protocol is secure in the SUC framework, specifically in the
OT-hybrid model. The protocol is then executed over a pseudo-authenticated channel,
which is realized with a general signature construction. The proof structure (in the OT-
hybrid model) is simple, so that it can be lifted to the quantum setting and therefore
it is quantum secure when instantiated with post-quantum primitives. The mathematical
argument relies on the existence of post-quantum signatures and a quantum secure protocol
for OT. A downside of the chosen OT protocol is that its proof structure is not simple,
so despite claims by the author that the protocol is quantum resistant, the post-quantum
security of the OT (and therefore the security of the entire protocol) is technically still a

147

conjecture. If this is considered unsatisfying, the OT protocol can be swapped out for any
other post-quantum UC-secure one.

An online implementation is available [Ver21]. It implements a combined ECDH/Kyber
KEX protocol, uses Dilithium signatures, and uses Keccak for symmetric cryptography,
where each primitive is instantiated with conservatively chosen parameters. It should be
noted that the choice of parameters was not driven by the mathematical proof, but by the
availability of cryptographic implementations, choosing the largest security parameters
available. The result is a fast-enough protocol with messages that are about the size of
sending a large photo. Tighter cryptanalysis could reveal that the parameters can be
decreased, increasing the efficiency of the construction.

Future research could focus on whether more efficient protocols exist, which seems
likely. Possibly these can be built directly from some of the properties provided by (for
example) code-, lattice-, or isogeny-based cryptosystems. Whatever the solution, it may
benefit from targeting our weaker sF ′

PEC functionality instead of aiming to construct a
PET. An improvement that possibly eliminates a full RTT would be to use the AKE itself
for realizing the split authentication. Within the current model, it is still unknown if such
a construction is secure or can be made secure with some minor adjustments to either the
functionality and/or the protocol.

Another research area that might prove fruitful is that of PAKEs, since these protocols
are already tasked with establishing strong cryptographic guarantees from low-entropy
shared secrets. Indeed PAKEs can be used for realizing key authentication. With ongoing
development and research into the security of post-quantum PAKEs, the confidence in these
systems may increase so that a PAKE based implementations may become the preferable
solution. Some may feel confident enough already to prefer a PAKE.

148

Chapter 5

Conclusion

A formal approach to cryptography is fundamental for security. By constructing an ab-
stract model and then applying rigorous mathematical reasoning, we are able to capture a
broad class of adversarial behaviour and provide strong guarantees of security against such
adversaries. To assess if this leads to real-world security, we should ask two questions: can
an attacker realistically bypass the adversary model to break security, and are the secu-
rity guarantees meaningful and complete? A negative answer to either of those questions
indicates a gap between theoretic and practical security. When possible, that gap should
be narrowed with stronger models and increasingly powerful mathematics, but otherwise
sound engineering practices are required.

Quantum cryptography, despite eliminating the need for computational complexity
assumptions in its models, is no exception. The key exhaustion attack on quantum key
distribution (QKD) demonstrates this. The attack does not indicate a mistake in any of the
existing security proofs, nor does it put into question any of the assumptions made by those
proofs: theoretically QKD operates exactly as specified. Practical deployments however
require some method to recover from key exhaustion, either in the form of a ceremony
(between users) or a protocol (between devices), both of which have a significant chance
of lowering the security of future communications. Preventing key exhaustion is therefore
essential.

I proposed two mitigations against key exhaustion in QKD. The mitigations combine
computationally secure authentication and information theoretically secure (ITS) authen-
tication. The resulting protocol provides computational protection against key exhaustion,
without compromising any of the ITS guarantees that QKD provides over its output. The
current arguments for the security of the mitigations are not as rigorous as the arguments

149

for other guarantees provided by cryptographic protocols. Currently the biggest obstacle
in that regard is the non-existence of a mathematical definition of availability, which can
be the subject of future research.

Mathematical reasoning should be used wherever possible. This is especially true in the
context of quantum information, which is notorious for being unintuitive. The intuitions
we have built up in reasoning about classical systems do not always carry over to quantum
systems, as demonstrated by the attacks on quantum distance bounding protocols. Each
of the protocols without any terrorist fraud (TF) resistance is secure, but when combined
with a classical countermeasure (that is effective and secure in classical protocols), the
result is completely insecure.

Much of the existing work on distance bounding operates in informal frameworks. Cur-
rently there is lack of consensus on the right formal model for time-of-flight in communi-
cation and on the security definition of TF. The lack of a formal adversary model means
that it is unclear what the adversary can and cannot do by employing quantum strategies.
Future research could study whether quantum strategies affect classical distance bounding
protocols more generally than demonstrated in this thesis.

The last chapter highlights another aspect of real-world security that is not covered
by mathematics: the usability of security software. Usability studies indicate that the
currently popular solution of manually comparing fingerprints for key authentication is
problematic for many users and results in diminished security. The socialist millionaire
protocol (SMP) has the potential to remove some of these problems, and I believe that a
post-quantum replacement is essential for security in the near future.

The split private equality confirmation (PEC) protocol as presented in this thesis pro-
vides such a post-quantum replacement. Much of the focus of the research community
lately has been on key encapsulation mechanisms (KEMs) and signatures: the categories
in the NIST PQC project. KEMs (with some assumptions on the structure of the public
keys) can be used to construct oblivious transfer (OT), a powerful cryptographic tool. In-
deed in this thesis I use OT to construct the PEC, and a prototype implementation (also
using post-quantum signatures) demonstrates that the construction is relatively efficient.
Building the protocol from KEMs and signatures has several advantages: it is built from
primitives that have received much scrutiny by the cryptographic community, it allows
for a simple and robust implementation that uses available cryptographic libraries, and it
allows combining multiple KEMs such that the protocol is secure as long as one KEM is
secure. The current analysis of the protocol is not without limitations. Specifically, future
research could strengthen the security argument by analyzing the OT construction in the
QROM and by considering concrete analysis against uniform adversaries.

150

References

[ABB+14] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin,
M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. Painchault,
M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Rigu-
idel, L. Salvail, A. Shields, H. Weinfurter, and A. Zeilinger. “Using quan-
tum key distribution for cryptographic purposes: A survey”. In: Theoreti-
cal Computer Science 560.P1 (Dec. 2014), pp. 62–81. issn: 0304-3975. doi:
10.1016/j.tcs.2014.09.018 (cit. on p. 24).

[ABB+15] Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe Bos, Johannes Buch-
mann, Wouter Castryck, Orr Dunkelman, Tim Güneysu, Shay Gueron, An-
dreas Hülsing, Tanja Lange, Mohamed Saied Emam Mohamed, Christian
Rechberger, Peter Schwabe, Nicolas Sendrier, Frederik Vercauteren, and Bo-
Yin Yang. Initial recommendations of long-term secure post-quantum sys-
tems. Tech. rep. Technische Universiteit Eindhoven, Sept. 2015. url: https:
//pqcrypto.eu.org/docs/initial- recommendations.pdf (visited on
08/07/2021) (cit. on p. 3).

[ABB+18] Gildas Avoine, Muhammed Ali Bingöl, Ioana Boureanu, Srdjan Čapkun, Ger-
hard P. Hancke, Süleyman Kardas, Chong Hee Kim, Cédric Lauradoux, Ben-
jamin Martin, Jorge Munilla, Alberto Peinado, Kasper Bonne Rasmussen,
Dave Singelée, Aslan Tchamkerten, Rolando Trujillo-Rasua, and Serge Vau-
denay. “Security of Distance-Bounding: A Survey”. In: ACM Computing Sur-
veys 51.5 (Sept. 2018), pp. 1–33. doi: 10.1145/3264628 (cit. on pp. 63, 66,
100).

[ABC+20] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben
Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tom-
linson, and Wen Wang. Classic McEliece: conservative code-based cryptogra-

151

https://doi.org/10.1016/j.tcs.2014.09.018
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://doi.org/10.1145/3264628

phy. Post-Quantum Cryptography – Round 3. National Institute of Standards
and Technology, Oct. 2020. url: https://classic.mceliece.org/nist/
mceliece-20201010.pdf (visited on 08/07/2021) (cit. on p. 129).

[ABD+17] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber, Algorithm Specifications and Supporting Docu-
mentation. Post-Quantum Cryptography – Round 1. National Institute of
Standards and Technology, Nov. 2017. url: https://pq-crystals.org/
kyber/data/kyber-specification.pdf (visited on 08/07/2021) (cit. on
p. 127).

[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Kyber, Algorithm Specifications and Sup-
porting Documentation (version 3.01). Post-Quantum Cryptography –
Round 3. National Institute of Standards and Technology, Jan. 2021. url:
https://pq-crystals.org/kyber/data/kyber-specification-round3-
20210131.pdf (visited on 08/07/2021) (cit. on pp. 131, 143).

[Abi19] Aysajan Abidin. “Quantum Distance Bounding”. In: Proceedings of the
12th Conference on Security and Privacy in Wireless and Mobile Networks.
WiSec ’19. Miami, Florida: Association for Computing Machinery, May
2019, pp. 233–238. isbn: 9781450367264. doi: 10.1145/3317549.3323414
(cit. on pp. 6, 57, 75, 88, 89, 91, 99, 100).

[Abi20] Aysajan Abidin. “On Detecting Relay Attacks on RFID Systems Us-
ing Qubits”. In: Cryptography 4.2 (May 2020), p. 14. doi: 10 . 3390 /
cryptography4020014 (cit. on pp. 6, 57, 75, 92, 93, 99, 100).

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. “The Double Ratchet: Se-
curity Notions, Proofs, and Modularization for the Signal Protocol”. In: Ad-
vances in Cryptology – EUROCRYPT 2019. Ed. by Yuval Ishai and Vincent
Rijmen. Cham: Springer International Publishing, 2019, pp. 129–158. isbn:
978-3-030-17653-2. doi: 10.1007/978-3-030-17653-2_5 (cit. on p. 102).

[AG07] Chris Alexander and Ian Goldberg. “Improved User Authentication in Off-
the-Record Messaging”. In: Proceedings of the 2007 ACM Workshop on Pri-
vacy in Electronic Society. WPES ’07. Alexandria, Virginia, USA: Associa-
tion for Computing Machinery, Oct. 2007, pp. 41–47. isbn: 9781595938831.
doi: 10.1145/1314333.1314340 (cit. on p. 103).

152

https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://doi.org/10.1145/3317549.3323414
https://doi.org/10.3390/cryptography4020014
https://doi.org/10.3390/cryptography4020014
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1145/1314333.1314340

[AHIC15] Hala Assal, Stephanie Hurtado, Ahsan Imran, and Sonia Chiasson. “What’s
the deal with privacy apps?: a comprehensive exploration of user perception
and usability”. In: Proceedings of the 14th International Conference on Mobile
and Ubiquitous Multimedia. Ed. by Clemens Holzmann and René Mayrhofer.
ACM, Nov. 2015, pp. 25–36. doi: 10.1145/2836041.2836044 (cit. on p. 107).

[ALM11] Gildas Avoine, Cédric Lauradoux, and Benjamin Martin. “How secret-sharing
can defeat terrorist fraud”. In: Proceedings of the Fourth ACM Conference on
Wireless Network Security. Ed. by Dieter Gollmann, Dirk Westhoff, Gene
Tsudik, and N. Asokan. ACM, June 2011, pp. 145–156. doi: 10 . 1145 /
1998412.1998437 (cit. on pp. 59, 67).

[AMSP17] Aysajan Abidin, Eduard Marin, Dave Singelée, and Bart Preneel. “Towards
Quantum Distance Bounding Protocols”. In: Radio Frequency Identification
and IoT Security 2016. Ed. by Gerhard P. Hancke and Konstantinos Markan-
tonakis. Cham: Springer International Publishing, 2017, pp. 151–162. isbn:
978-3-319-62024-4. doi: 10.1007/978-3-319-62024-4_11 (cit. on pp. 6, 57,
75, 77, 78, 85–87, 99, 100).

[AT17] Nicholas Akinyokun and Vanessa Teague. “Security and Privacy Implica-
tions of NFC-enabled Contactless Payment Systems”. In: Proceedings of the
12th International Conference on Availability, Reliability and Security. ACM,
Sept. 2017, pp. 1–10. isbn: 9781450352574. doi: 10.1145/3098954.3103161
(cit. on p. 67).

[BB05] Laurent Bussard and Walid Bagga. “Distance-Bounding Proof of Knowl-
edge to Avoid Real-Time Attacks”. In: Security and Privacy in the Age of
Ubiquitous Computing, SEC 2005. Ed. by Ryôichi Sasaki, Sihan Qing, Eiji
Okamoto, and Hiroshi Yoshiura. Vol. 181. IFIP. Springer, 2005, pp. 223–238.
doi: 10.1007/0-387-25660-1_15 (cit. on p. 63).

[BB84] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: public key
distribution and coin tossing”. In: International Conference on Computers,
Systems and Signal Processing. Vol. 1. Bangalore, India, Dec. 1984, pp. 175–
179. arXiv: 2003.06557 [quant-ph] (cit. on pp. 3, 13, 18, 41).

[BBD+91] Samy Bengio, Gilles Brassard, Yvo Desmedt, Claude Goutier, and Jean-
Jacques Quisquater. “Secure Implementations of Identification Systems”. In:
Journal of Cryptology 4 (May 1991), pp. 175–183. doi: 10.1007/BF00196726
(cit. on pp. 62, 69).

153

https://doi.org/10.1145/2836041.2836044
https://doi.org/10.1145/1998412.1998437
https://doi.org/10.1145/1998412.1998437
https://doi.org/10.1007/978-3-319-62024-4_11
https://doi.org/10.1145/3098954.3103161
https://doi.org/10.1007/0-387-25660-1_15
https://arxiv.org/abs/2003.06557
https://doi.org/10.1007/BF00196726

[BBD09] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post-Quantum
Cryptography. 1st ed. Information Security and Cryptography. Springer-
Verlag Berlin, 2009. isbn: 978-3-540-88701-0. doi: 10.1007/978-3-540-
88702-7 (cit. on p. 3).

[BC93] Stefan Brands and David Chaum. “Distance-Bounding Protocols”. In: Ad-
vances in Cryptology — EUROCRYPT ’93. Ed. by Tor Helleseth. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 344–359. isbn: 978-3-540-
48285-7. doi: 10.1007/3-540-48285-7_30 (cit. on pp. 56, 61, 63, 100).

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. “Se-
cure Computation Without Authentication”. In: Advances in Cryptology –
CRYPTO 2005. Ed. by Victor Shoup. Berlin, Heidelberg: Springer, 2005,
pp. 361–377. isbn: 978-3-540-31870-5. doi: 10.1007/11535218_22 (cit. on
pp. 115, 116, 120–123, 140, 154).

[BCL+10] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure
Computation Without Authentication. Revision of 2010-08-20, this is the full
version of [BCL+05]. Aug. 2010. Cryptology ePrint Archive: 2007/464 (cit.
on pp. 122, 140).

[BCMM00] Dagmar Bruß, Mirko Cinchetti, G. Mauro D’Ariano, and Chiara Macchi-
avello. “Phase-covariant quantum cloning”. In: Physical Review A 62.012302
(June 2000), p. 7. doi: 10.1103/PhysRevA.62.012302 (cit. on p. 87).

[BDCZ98] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller. “Quantum Repeaters:
The Role of Imperfect Local Operations in Quantum Communication”. In:
Physical Review Letters 81.26 (Dec. 1998), pp. 5932–5935. doi: 10.1103/
PhysRevLett.81.5932 (cit. on p. 13).

[BDD+17] Paulo S. L. M. Barreto, Bernardo David, Rafael Dowsley, Kirill Morozov, and
Anderson C. A. Nascimento. A Framework for Efficient Adaptively Secure
Composable Oblivious Transfer in the ROM. Oct. 2017. Cryptology ePrint
Archive: 2017/993 (cit. on p. 127).

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. “Random Oracles in a Quantum World”. In:
Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference
on the Theory and Application of Cryptology and Information Security. Ed.
by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. Lecture Notes in Computer
Science. Springer, 2011, pp. 41–69. doi: 10.1007/978-3-642-25385-0_3
(cit. on pp. 119, 131).

154

https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/11535218_22
https://eprint.iacr.org/2007/464
https://doi.org/10.1103/PhysRevA.62.012302
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://eprint.iacr.org/2017/993
https://doi.org/10.1007/978-3-642-25385-0_3

[BDG20] Mihir Bellare, Hannah Davis, and Felix Günther. “Separate Your Domains:
NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability”. In:
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Ed.
by Anne Canteaut and Yuval Ishai. Vol. 12106. Lecture Notes in Computer
Science. Springer, 2020, pp. 3–32. doi: 10.1007/978-3-030-45724-2_1
(cit. on pp. 119, 130).

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. “XMSS - A Prac-
tical Forward Secure Signature Scheme Based on Minimal Security Assump-
tions”. In: Post-Quantum Cryptography. Ed. by Bo-Yin Yang. Berlin, Heidel-
berg: Springer, 2011, pp. 117–129. isbn: 978-3-642-25405-5. doi: 10.1007/
978-3-642-25405-5_8 (cit. on pp. 19, 26).

[BDK+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
“CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based KEM”. In: Eu-
ropean Symposium on Security and Privacy. IEEE, Apr. 2018, pp. 353–367.
doi: 10.1109/EuroSP.2018.00032 (cit. on p. 143).

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Kec-
cak”. In: Advances in Cryptology - EUROCRYPT 2013, 32nd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, Athens, Greece, May 26-30, 2013. Proceedings. Ed. by Thomas Jo-
hansson and Phong Q. Nguyen. Vol. 7881. Lecture Notes in Computer Sci-
ence. Springer, 2013, pp. 313–314. doi: 10.1007/978-3-642-38348-9_19
(cit. on p. 143).

[Ber18] Daniel J. Bernstein. Is the security of quantum cryptography guaranteed by
the laws of physics? Mar. 2018. arXiv: 1803.04520 [quant-ph] (cit. on
p. 12).

[BFG+21a] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Dou-
glas Stebila. Post-quantum Asynchronous Deniable Key Exchange and the
Signal Handshake. June 2021. Cryptology ePrint Archive: 2021/769 (cit. on
p. 102).

[BFG+21b] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and
Douglas Stebila. “Towards Post-Quantum Security for Signal’s X3DH Hand-
shake”. In: Selected Areas in Cryptography. Ed. by Orr Dunkelman, Michael J.
Jacobson Jr., and Colin O’Flynn. Cham: Springer, 2021, pp. 404–430. isbn:
978-3-030-81652-0. doi: 10.1007/978-3-030-81652-0_16 (cit. on p. 120).

155

https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/978-3-642-38348-9_19
https://arxiv.org/abs/1803.04520
https://eprint.iacr.org/2021/769
https://doi.org/10.1007/978-3-030-81652-0_16

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-Record Communica-
tion, or, Why Not to Use PGP”. In: Proceedings of the 2004 ACM Workshop
on Privacy in the Electronic Society. WPES ’04. Washington DC, USA: As-
sociation for Computing Machinery, 2004, pp. 77–84. isbn: 1581139683. doi:
10.1145/1029179.1029200 (cit. on pp. 102, 105).

[BH96] V. Bužek and M. Hillery. “Quantum copying: Beyond the no-cloning theo-
rem”. In: Physical Review A 54.3 (Sept. 1996), pp. 1844–1852. doi: 10.1103/
PhysRevA.54.1844 (cit. on p. 87).

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. “The SPHINCS+ Signature Framework”.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019. Ed. by Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz. ACM, 2019, pp. 2129–2146.
doi: 10.1145/3319535.3363229 (cit. on pp. 19, 50).

[BHL+05] Michael Ben-Or, Michał Horodecki, Debbie W. Leung, Dominic Mayers, and
Jonathan Oppenheim. “The Universal Composable Security of Quantum Key
Distribution”. In: Theory of Cryptography. Ed. by Joe Kilian. Berlin, Heidel-
berg: Springer, 2005, pp. 386–406. isbn: 978-3-540-30576-7. doi: 10.1007/
978-3-540-30576-7_21 (cit. on p. 33).

[BL17] Daniel J. Bernstein and Tanja Lange. “Post-quantum cryptography”. In: Na-
ture 549 (Sept. 2017), pp. 188–194. doi: 10.1038/nature23461 (cit. on
p. 3).

[BMS20] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for Authentica-
tion and Key Establishment. 2nd ed. Information Security and Cryptography.
Springer, 2020. isbn: 978-3-662-58145-2. doi: 10.1007/978-3-662-58146-9
(cit. on p. 125).

[BMV15] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. “Practical and
provably secure distance-bounding”. In: Journal of Computer Security 23.2
(2015), pp. 229–257. doi: 10.3233/JCS-140518 (cit. on pp. 66, 67).

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. “Authenticated Key
Exchange Secure against Dictionary Attacks”. In: Advances in Cryptology —
EUROCRYPT 2000. Ed. by Bart Preneel. Berlin, Heidelberg: Springer, 2000,
pp. 139–155. isbn: 978-3-540-45539-4. doi: 10.1007/3-540-45539-6_11
(cit. on p. 124).

156

https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1103/PhysRevA.54.1844
https://doi.org/10.1103/PhysRevA.54.1844
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-540-30576-7_21
https://doi.org/10.1007/978-3-540-30576-7_21
https://doi.org/10.1038/nature23461
https://doi.org/10.1007/978-3-662-58146-9
https://doi.org/10.3233/JCS-140518
https://doi.org/10.1007/3-540-45539-6_11

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols”. In: CCS ’93, Proceedings of the
1st ACM Conference on Computer and Communications Security. Ed. by
Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby. ACM, 1993, pp. 62–73. doi: 10 . 1145 / 168588 . 168596
(cit. on p. 118).

[BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traoré. “A fair and ef-
ficient solution to the socialist millionaires’ problem”. In: Discrete Applied
Mathematics 111.1 (2001). Coding and Cryptology, pp. 23–36. issn: 0166-
218X. doi: 10.1016/S0166- 218X(00)00342- 5 (cit. on pp. 7, 106, 108,
109).

[BV15] Ioana Boureanu and Serge Vaudenay. “Optimal Proximity Proofs”. In: In-
formation Security and Cryptology. Ed. by Dongdai Lin, Moti Yung, and
Jianying Zhou. Cham: Springer International Publishing, 2015, pp. 170–190.
isbn: 978-3-319-16745-9. doi: 10.1007/978-3-319-16745-9_10 (cit. on
p. 66).

[CAD+20] David A. Cooper, Daniel C. Apon, Quynh H. Dang, Michael S. Davidson,
Morris J. Dworkin, and Carl A. Miller. Recommendation for Stateful Hash-
Based Signature Schemes. Tech. rep. Special Publication 800-208. National
Institute of Standards and Technology, Oct. 2020. doi: 10.6028/NIST.SP.
800-208 (cit. on p. 51).

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for
Cryptographic Protocols”. In: 42nd Annual Symposium on Foundations
of Computer Science, FOCS 2001. At the moment of writing, an addi-
tional 16 versions of this work exist on ePrint (https://eprint.iacr.
org / 2000 / 067, latest 2020-02-12) and 2 versions in the Journal of the
ACM (10.1145/3402457). IEEE Computer Society, 2001, pp. 136–145. doi:
10.1109/SFCS.2001.959888 (cit. on pp. 7, 104, 110, 113, 115).

[CCD+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. “A Formal Security Analysis of the Signal Messaging Pro-
tocol”. In: Journal of Cryptology 33 (2020), pp. 1914–1983. doi: 10.1007/
s00145-020-09360-1 (cit. on p. 102).

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. “A Simpler Variant of Uni-
versally Composable Security for Standard Multiparty Computation”. In:
Advances in Cryptology – CRYPTO 2015. Ed. by Rosario Gennaro and

157

https://doi.org/10.1145/168588.168596
https://doi.org/10.1016/S0166-218X(00)00342-5
https://doi.org/10.1007/978-3-319-16745-9_10
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.6028/NIST.SP.800-208
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://doi.org/10.1145/3402457
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/s00145-020-09360-1

Matthew Robshaw. Berlin, Heidelberg: Springer, 2015, pp. 3–22. isbn: 978-
3-662-48000-7. doi: 10.1007/978-3-662-48000-7_1 (cit. on pp. 104, 115–
117).

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle
Methodology, Revisited”. In: Journal of the ACM 51.4 (July 2004), pp. 557–
594. issn: 0004-5411. doi: 10.1145/1008731.1008734 (cit. on p. 119).

[CGMO09] Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky.
“Position Based Cryptography”. In: Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference. Ed. by Shai Halevi.
Vol. 5677. Lecture Notes in Computer Science. Springer, 2009, pp. 391–407.
doi: 10.1007/978-3-642-03356-8_23 (cit. on p. 68).

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Phil MacKen-
zie. “Universally Composable Password-Based Key Exchange”. In: Advances
in Cryptology – EUROCRYPT 2005. Ed. by Ronald Cramer. Berlin, Heidel-
berg: Springer, 2005, pp. 404–421. isbn: 978-3-540-32055-5. doi: 10.1007/
11426639_24 (cit. on pp. 124, 140).

[CHTW04] Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. “Con-
sequences and Limits of Nonlocal Strategies”. In: Proceedings. 19th IEEE
Annual Conference on Computational Complexity (CCC’04). June 2004,
pp. 236–249. doi: 10.1109/CCC.2004.1313847 (cit. on p. 101).

[CK02] Ran Canetti and Hugo Krawczyk. “Universally Composable Notions of Key
Exchange and Secure Channels”. In: Advances in Cryptology — EURO-
CRYPT 2002. Ed. by Lars R. Knudsen. Berlin, Heidelberg: Springer, 2002,
pp. 337–351. isbn: 978-3-540-46035-0. doi: 10.1007/3-540-46035-7_22
(cit. on p. 141).

[Con20] Car Connectivity Consortium. Digital Key - The Future of Vehicle Access
(Whitepaper). Tech. rep. Release 2.0. Apr. 2020. url: https://global-
carconnectivity.org/wp-content/uploads/2020/04/CCC_Digital_Key_
2.0.pdf (visited on 08/07/2021) (cit. on p. 67).

[Con76] John H. Conway. On numbers and games. Ed. by P. M. Cohn and G. E. H.
Reuter. Vol. 6. London Mathematical Society Monographs. Academic Press,
1976. isbn: 0-12-186350-6 (cit. on p. 62).

158

https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1007/978-3-642-03356-8_23
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1109/CCC.2004.1313847
https://doi.org/10.1007/3-540-46035-7_22
https://global-carconnectivity.org/wp-content/uploads/2020/04/CCC_Digital_Key_2.0.pdf
https://global-carconnectivity.org/wp-content/uploads/2020/04/CCC_Digital_Key_2.0.pdf
https://global-carconnectivity.org/wp-content/uploads/2020/04/CCC_Digital_Key_2.0.pdf

[CP92] David Chaum and Torben P. Pedersen. “Wallet Databases with Observers”.
In: Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-
tology Conference. Ed. by Ernest F. Brickell. Vol. 740. Lecture Notes in Com-
puter Science. Springer, 1992, pp. 89–105. doi: 10.1007/3-540-48071-4_7
(cit. on p. 108).

[CRSČ12] Cas J. F. Cremers, Kasper Bonne Rasmussen, Benedikt Schmidt, and Srd-
jan Čapkun. “Distance Hijacking Attacks on Distance Bounding Protocols”.
In: IEEE Symposium on Security and Privacy, SP 2012. IEEE Computer
Society, 2012, pp. 113–127. doi: 10.1109/SP.2012.17 (cit. on p. 63).

[CZC+21] Yu-Ao Chen, Qiang Zhang, Teng-Yun Chen, Wen-Qi Cai, Sheng-Kai Liao,
Jun Zhang, Kai Chen, Juan Yin, Ji-Gang Ren, Zhu Chen, Sheng-Long Han,
Qing Yu, Ken Liang, Fei Zhou, Xiao Yuan, Mei-Sheng Zhao, Tian-Yin Wang,
Xiao Jiang, Liang Zhang, Wei-Yue Liu, Yang Li, Qi Shen, Yuan Cao, Chao-
Yang Lu, Rong Shu, Jian-Yu Wang, Li Li, Nai-Le Liu, Feihu Xu, Xiang-Bin
Wang, Cheng-Zhi Peng, and Jian-Wei Pan. “An integrated space-to-ground
quantum communication network over 4,600 kilometres”. In: Nature 589 (Jan.
2021), pp. 214–219. issn: 1476-4687. doi: 10.1038/s41586-020-03093-8
(cit. on p. 24).

[DAL+17] Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael
Snook. “Provably Secure Password Authenticated Key Exchange Based on
RLWE for the Post-Quantum World”. In: Topics in Cryptology – CT-RSA
2017. Ed. by Helena Handschuh. Cham: Springer International Publishing,
2017, pp. 183–204. isbn: 978-3-319-52153-4. doi: 10.1007/978- 3- 319-
52153-4_11 (cit. on p. 124).

[DFKO11] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. “A For-
mal Approach to Distance-Bounding RFID Protocols”. In: Information Se-
curity. Ed. by Xuejia Lai, Jianying Zhou, and Hui Li. Berlin, Heidelberg:
Springer, 2011, pp. 47–62. isbn: 978-3-642-24861-0. doi: 10.1007/978-3-
642-24861-0_4 (cit. on p. 66).

[DGB87] Yvo Desmedt, Claude Goutier, and Samy Bengio. “Special Uses and Abuses of
the Fiat-Shamir Passport Protocol”. In: Advances in Cryptology - CRYPTO
’87, A Conference on the Theory and Applications of Cryptographic Tech-
niques. Ed. by Carl Pomerance. Vol. 293. Lecture Notes in Computer Science.
Springer, 1987, pp. 21–39. doi: 10.1007/3-540-48184-2_3 (cit. on pp. 62,
68).

159

https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1109/SP.2012.17
https://doi.org/10.1038/s41586-020-03093-8
https://doi.org/10.1007/978-3-319-52153-4_11
https://doi.org/10.1007/978-3-319-52153-4_11
https://doi.org/10.1007/978-3-642-24861-0_4
https://doi.org/10.1007/978-3-642-24861-0_4
https://doi.org/10.1007/3-540-48184-2_3

[DHHM99] Miloslav Dušek, Ondřej Haderka, Martin Hendrych, and Robert Myška.
“Quantum identification system”. In: Physical Review A 60.1 (July 1999),
pp. 149–156. doi: 10.1103/PhysRevA.60.149 (cit. on p. 22).

[Eke91] Artur K. Ekert. “Quantum cryptography based on Bell’s theorem”. In: Physi-
cal Review Letters 67 (Aug. 1991), pp. 661–663. doi: 10.1103/PhysRevLett.
67.661 (cit. on p. 13).

[Ell07] Carl M. Ellison. Ceremony Design and Analysis. Oct. 2007. Cryptology
ePrint Archive: 2007/399 (cit. on pp. 4, 24).

[ETSI] ETSI QSC working group. Quantum Safe Cryptography (QSC). url: https:
//www.etsi.org/technologies/quantum-safe-cryptography (visited on
08/07/2021) (cit. on p. 3).

[FNW96] Ronald Fagin, Moni Naor, and Peter Winkler. “Comparing Information With-
out Leaking It”. In: Communications of the ACM 39.5 (1996), pp. 77–85. doi:
10.1145/229459.229469 (cit. on p. 109).

[FO13] Marc Fischlin and Cristina Onete. “Terrorism in Distance Bounding: Mod-
eling Terrorist-Fraud Resistance”. In: Applied Cryptography and Network Se-
curity. Ed. by Michael Jacobson, Michael Locasto, Payman Mohassel, and
Reihaneh Safavi-Naini. Berlin, Heidelberg: Springer, 2013, pp. 414–431. isbn:
978-3-642-38980-1. doi: 10.1007/978-3-642-38980-1_26 (cit. on p. 66).

[FS86] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: Advances in Cryptology -
CRYPTO ’86. Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes in
Computer Science. Springer, 1986, pp. 186–194. doi: 10 . 1007 / 3 - 540 -
47721-7_12 (cit. on p. 108).

[FSK10] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engi-
neering - Design Principles and Practical Applications. Wiley, 2010. isbn:
978-0-470-47424-2. url: http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-0470474246.html (visited on 08/07/2021) (cit. on p. 50).

[FV16] Jennifer Katherine Fernick and Sebastian R. Verschoor. Private patent. Dec.
2016. url: https://github.com/sebastianv89/private-patent (visited
on 08/07/2021) (cit. on p. 174).

160

https://doi.org/10.1103/PhysRevA.60.149
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
https://eprint.iacr.org/2007/399
https://www.etsi.org/technologies/quantum-safe-cryptography
https://www.etsi.org/technologies/quantum-safe-cryptography
https://doi.org/10.1145/229459.229469
https://doi.org/10.1007/978-3-642-38980-1_26
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470474246.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470474246.html
https://github.com/sebastianv89/private-patent

[FV17] Jennifer Katherine Fernick and Sebastian Verschoor. “Privacy-Preserving
Patent Search: Additively Homomorphic Encryption Techniques for Private
Text Mining over Public Datasets”. In: ECML PKDD 2017, Workshop Data
Mining with Secure Computation. Sept. 2017. url: https://drive.google.
com / file / d / 0B1v5Ij69wutGZEVtRFBJTEVtN0tqd3Nrb2FDcVRhUlo4QWJr /
view (visited on 08/07/2021) (cit. on p. 174).

[GH00] Gerald Gilbert and Michael Hamrick. Practical Quantum Cryptography: A
Comprehensive Analysis (Part One). Sept. 2000. arXiv: quant-ph/0009027
(cit. on p. 22).

[GJZ01] Joshua D. Guttman, F. Javier Thayer, and Lenore D. Zuck. “The faithful-
ness of abstract protocol analysis: message authentication”. In: CCS 2001,
Proceedings of the 8th ACM Conference on Computer and Communications
Security. Ed. by Michael K. Reiter and Pierangela Samarati. ACM, 2001,
pp. 186–195. doi: 10.1145/501983.502009 (cit. on pp. 59, 60, 65).

[Gle87] James Gleick. A new approach to protecting secrets is discovered. Feb. 17,
1987. url: https://www.nytimes.com/1987/02/17/science/a-new-
approach - to - protecting - secrets - is - discovered . html (visited on
08/07/2021) (cit. on p. 68).

[Gol04] Oded Goldreich. The Foundations of Cryptography – Volume 2: Basic Ap-
plications. Cambridge University Press, 2004. isbn: 0-521-83084-2. doi: 10.
1017/CBO9780511721656 (cit. on p. 4).

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search”. In: Proceedings of the 28th Annual ACM Symposium on the Theory
of Computing. July 1996, pp. 212–219. doi: 10 . 1145 / 237814 . 237866
(cit. on p. 3).

[Ham15] Mike Hamburg. “Decaf: Eliminating Cofactors Through Point Compression”.
In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Con-
ference. Ed. by Rosario Gennaro and Matthew Robshaw. Vol. 9215. Lecture
Notes in Computer Science. Springer, 2015, pp. 705–723. doi: 10.1007/978-
3-662-47989-6_34 (cit. on pp. 131, 143).

[Han11] Gerhard P. Hancke. “Practical eavesdropping and skimming attacks on
high-frequency RFID tokens”. In: Journal of Computer Security 19.2 (2011),
pp. 259–288. doi: 10.3233/JCS-2010-0407 (cit. on p. 67).

161

https://drive.google.com/file/d/0B1v5Ij69wutGZEVtRFBJTEVtN0tqd3Nrb2FDcVRhUlo4QWJr/view
https://drive.google.com/file/d/0B1v5Ij69wutGZEVtRFBJTEVtN0tqd3Nrb2FDcVRhUlo4QWJr/view
https://drive.google.com/file/d/0B1v5Ij69wutGZEVtRFBJTEVtN0tqd3Nrb2FDcVRhUlo4QWJr/view
https://arxiv.org/abs/quant-ph/0009027
https://doi.org/10.1145/501983.502009
https://www.nytimes.com/1987/02/17/science/a-new-approach-to-protecting-secrets-is-discovered.html
https://www.nytimes.com/1987/02/17/science/a-new-approach-to-protecting-secrets-is-discovered.html
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-662-47989-6_34
https://doi.org/10.1007/978-3-662-47989-6_34
https://doi.org/10.3233/JCS-2010-0407

[HBG+18] A. Heulsing, D. Butin, S. Gazdag, J. Rijneveld, and A. Mohaisen. XMSS:
eXtended Merkle Signature Scheme. RFC 8391. RFC Editor, May 2018. doi:
10.17487/RFC8391 (cit. on p. 19).

[Hel67] Carl W. Helstrom. “Detection theory and quantum mechanics”. In: Infor-
mation and Control 10.3 (Mar. 1967), pp. 254–291. issn: 0019-9958. doi:
10.1016/S0019-9958(67)90302-6 (cit. on p. 74).

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis
of the Fujisaki-Okamoto Transformation”. In: Theory of Cryptography - 15th
International Conference, TCC 2017. Ed. by Yael Kalai and Leonid Reyzin.
Vol. 10677. Lecture Notes in Computer Science. Springer, 2017, pp. 341–371.
doi: 10.1007/978-3-319-70500-2_12 (cit. on p. 129).

[HK05] Gerhard P. Hancke and Markus G. Kuhn. “An RFID Distance Bounding
Protocol”. In: First International Conference on Security and Privacy for
Emerging Areas in Communications Networks (SECURECOMM’05). Sept.
2005, pp. 67–73. doi: 10.1109/SECURECOMM.2005.56 (cit. on p. 63).

[HL16] Amir Herzberg and Hemi Leibowitz. “Can Johnny finally encrypt?: evaluat-
ing E2E-encryption in popular IM applications”. In: Proceedings of the 6th
Workshop on Socio-Technical Aspects in Security and Trust, STAST 2016.
Ed. by Gabriele Lenzini, Giampaolo Bella, Zinaida Benenson, and Carrie E.
Gates. ACM, 2016, pp. 17–28. doi: 10.1145/3046055.3046059 (cit. on
p. 106).

[HLS+21] Amir Herzberg, Hemi Leibowitz, Kent E. Seamons, Elham Vaziripour, Justin
Wu, and Daniel Zappala. “Secure Messaging Authentication Ceremonies Are
Broken”. In: IEEE Security & Privacy 19.2 (2021), pp. 29–37. doi: 10.1109/
MSEC.2020.3039727 (cit. on p. 106).

[HO17] Cormac Herley and Paul C. van Oorschot. “SoK: Science, Security and the
Elusive Goal of Security as a Scientific Pursuit”. In: IEEE Symposium on
Security and Privacy SP. IEEE Computer Society, 2017, pp. 99–120. doi:
10.1109/SP.2017.38 (cit. on p. 1).

[Hol72] Alexander S. Holevo. “An analogue of statistical decision theory and non-
commutative probability theory”. In: Trudy Moskovskogo Matematicheskogo
Obshchestva 26 (1972), pp. 133–149 (cit. on p. 74).

162

https://doi.org/10.17487/RFC8391
https://doi.org/10.1016/S0019-9958(67)90302-6
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1109/SECURECOMM.2005.56
https://doi.org/10.1145/3046055.3046059
https://doi.org/10.1109/MSEC.2020.3039727
https://doi.org/10.1109/MSEC.2020.3039727
https://doi.org/10.1109/SP.2017.38

[HSS11] Sean Hallgren, Adam Smith, and Fang Song. “Classical Cryptographic Proto-
cols in a Quantum World”. In: Advances in Cryptology – CRYPTO 2011. Ed.
by Phillip Rogaway. Berlin, Heidelberg: Springer, 2011, pp. 411–428. isbn:
978-3-642-22792-9. doi: 10.1007/978-3-642-22792-9_23 (cit. on p. 139).

[Hwa03] Won-Young Hwang. “Quantum Key Distribution with High Loss: Toward
Global Secure Communication”. In: Physical Review Letters 91.057901 (Aug.
2003). doi: 10.1103/PhysRevLett.91.057901 (cit. on p. 26).

[Ina02] Hitoshi Inamori. “Security of Practical Time-Reversed EPR Quantum Key
Distribution”. In: Algorithmica 34 (Nov. 2002), pp. 340–366. issn: 1432-0541.
doi: 10.1007/s00453-002-0983-4 (cit. on p. 22).

[ISO18] Information technology - Security techniques - Information security manage-
ment systems - Overview and vocabulary. Standard. ISO/IEC 27000:2018(E).
Geneva, CH: International Organization for Standardization, Feb. 2018. url:
https://www.iso.org/standard/73906.html (visited on 08/07/2021) (cit.
on p. 1).

[JA16] Hoda Jannati and Ebrahim Ardeshir-Larijani. “Detecting relay attacks on
RFID communication systems using quantum bits”. In: Quantum Informa-
tion Processing 15.11 (Aug. 2016), pp. 4759–4771. doi: 10.1007/s11128-
016-1418-5 (cit. on pp. 57, 92).

[JSK+16] Nitin Jain, Birgit Stiller, Imran Khan, Dominique Elser, Christoph Mar-
quardt, and Gerd Leuchs. “Attacks on practical quantum key distribution
systems (and how to prevent them)”. In: Contemporary Physics 57.3 (2016),
pp. 366–387. doi: 10.1080/00107514.2016.1148333 (cit. on p. 12).

[KAK+08] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier Standaert,
and Olivier Pereira. “The Swiss-Knife RFID Distance Bounding Protocol”.
In: Information Security and Cryptology - ICISC 2008, 11th International
Conference. Ed. by Pil Joong Lee and Jung Hee Cheon. Vol. 5461. Lecture
Notes in Computer Science. Springer, 2008, pp. 98–115. doi: 10.1007/978-
3-642-00730-9_7 (cit. on pp. 63, 64, 94, 97, 99, 100).

[KCP07] Timo Kasper, Dario Carluccio, and Christof Paar. “An Embedded System
for Practical Security Analysis of Contactless Smartcards”. In: Information
Security Theory and Practices. Smart Cards, Mobile and Ubiquitous Comput-
ing Systems. Ed. by Damien Sauveron, Constantinos Markantonakis, Angelos
Bilas, and Jean-Jacques Quisquater. Vol. 4462. Lecture Notes in Computer
Science. Springer, 2007, pp. 150–160. doi: 10.1007/978-3-540-72354-7_13
(cit. on p. 67).

163

https://doi.org/10.1007/978-3-642-22792-9_23
https://doi.org/10.1103/PhysRevLett.91.057901
https://doi.org/10.1007/s00453-002-0983-4
https://www.iso.org/standard/73906.html
https://doi.org/10.1007/s11128-016-1418-5
https://doi.org/10.1007/s11128-016-1418-5
https://doi.org/10.1080/00107514.2016.1148333
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-540-72354-7_13

[Kil88] Joe Kilian. “Founding Cryptography on Oblivious Transfer”. In: Proceedings
of the 20th Annual ACM Symposium on Theory of Computing. Ed. by Janos
Simon. ACM, Jan. 1988, pp. 20–31. doi: 10.1145/62212.62215 (cit. on
p. 119).

[KLM07] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to
Quantum Computing. New York: Oxford University Press, 2007. isbn: 978-
0-19-857049-3 (cit. on p. 69).

[KM07] Neal Koblitz and Alfred Menezes. “Another Look at “Provable Security””. In:
Journal of Cryptology 20.1 (Nov. 2007), pp. 3–37. doi: 10.1007/s00145-
005-0432-z (cit. on p. 7).

[KM12] Neal Koblitz and Alfred Menezes. Another look at non-uniformity. June 2012.
Cryptology ePrint Archive: 2012/359 (cit. on p. 144).

[KM15] Neal Koblitz and Alfred J. Menezes. “The random oracle model: a twenty-year
retrospective”. In: Designs, Codes and Cryptography 77.2-3 (2015), pp. 587–
610. doi: 10.1007/s10623-015-0094-2 (cit. on p. 119).

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems”. In: Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference. Ed. by Neal Koblitz.
Vol. 1109. Lecture Notes in Computer Science. Springer, 1996, pp. 104–113.
doi: 10.1007/3-540-68697-5_9 (cit. on p. 2).

[KV09] Jonathan Katz and Vinod Vaikuntanathan. “Smooth Projective Hashing and
Password-Based Authenticated Key Exchange from Lattices”. In: Advances in
Cryptology – ASIACRYPT 2009. Ed. by Mitsuru Matsui. Berlin, Heidelberg:
Springer, 2009, pp. 636–652. isbn: 978-3-642-10366-7. doi: 10.1007/978-3-
642-10366-7_37 (cit. on p. 124).

[Lam79] Leslie Lamport. Constructing Digital Signatures from a One Way Function.
Tech. rep. CSL-98. This paper was published by IEEE in the Proceedings of
HICSS-43 in January, 2010. Oct. 1979. url: https://www.microsoft.com/
en- us/research/publication/constructing- digital- signatures-
one-way-function/ (cit. on p. 18).

[Lin17] Yehuda Lindell. “How to Simulate It - A Tutorial on the Simulation Proof
Technique”. In: Tutorials on the Foundations of Cryptography. Ed. by Yehuda
Lindell. Springer International Publishing, 2017, pp. 277–346. doi: 10.1007/
978-3-319-57048-8_6 (cit. on p. 110).

164

https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/s00145-005-0432-z
https://doi.org/10.1007/s00145-005-0432-z
https://eprint.iacr.org/2012/359
https://doi.org/10.1007/s10623-015-0094-2
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6

[Mar16a] Moxie Marlinspike. The Double Ratchet Algorithm. Ed. by Trevor Perrin.
Version 1. Nov. 2016. url: https://signal.org/docs/specifications/
doubleratchet/ (visited on 08/07/2021) (cit. on pp. 42, 102, 105).

[Mar16b] Moxie Marlinspike. The X3DH Key Agreement Protocol. Ed. by Trevor
Perrin. Version 1. Nov. 2016. url: https : / / signal . org / docs /
specifications/x3dh/ (visited on 08/07/2021) (cit. on p. 102).

[Mar17] Moxie Marlinspike. Safety number updates. June 2017. url: https :
/ / signal . org / blog / verified - safety - number - updates/ (visited
on 08/07/2021) (cit. on p. 103).

[May01] Dominic Mayers. “Unconditional Security in Quantum Cryptography”. In:
Journal of the ACM 48.3 (May 2001), pp. 351–406. issn: 0004-5411. doi:
10.1145/382780.382781 (cit. on p. 12).

[McE78] Robert J. McEliece. “A Public-Key Cryptosystem Based On Algebraic Cod-
ing Theory”. In: Deep Space Network Progress Report 44 (Jan. 1978), pp. 114–
116. url: https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.
PDF (visited on 08/07/2021) (cit. on p. 129).

[Mer89] Ralph C. Merkle. “A Certified Digital Signature”. In: Advances in Cryptology
- CRYPTO ’89 Proceedings. Ed. by Gilles Brassard. Vol. 435. Lecture Notes
in Computer Science. Springer, 1989, pp. 218–238. doi: 10.1007/0-387-
34805-0_21 (cit. on p. 18).

[MKF+16] David A. McGrew, Panos Kampanakis, Scott R. Fluhrer, Stefan-Lukas
Gazdag, Denis Butin, and Johannes A. Buchmann. “State Management
for Hash-Based Signatures”. In: Security Standardisation Research - Third
International Conference, SSR 2016. Ed. by Lidong Chen, David A. Mc-
Grew, and Chris J. Mitchell. Vol. 10074. Lecture Notes in Computer Science.
Springer, 2016, pp. 244–260. doi: 10.1007/978-3-319-49100-4_11 (cit. on
pp. 23, 51).

[MR19] Daniel Masny and Peter Rindal. “Endemic Oblivious Transfer”. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz. ACM, 2019, pp. 309–326. doi: 10 . 1145 / 3319535 .
3354210 (cit. on pp. 125, 127–129).

[MR21] Daniel Masny and Peter Rindal. Endemic Oblivious Transfer. July 2021.
Cryptology ePrint Archive: 2019/706 (cit. on pp. 7, 104, 125, 127–130, 143).

165

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://signal.org/blog/verified-safety-number-updates/
https://signal.org/blog/verified-safety-number-updates/
https://doi.org/10.1145/382780.382781
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-319-49100-4_11
https://doi.org/10.1145/3319535.3354210
https://doi.org/10.1145/3319535.3354210
https://eprint.iacr.org/2019/706

[MS07] Rajat Mittal and Mario Szegedy. “Product Rules in Semidefinite Program-
ming”. In: Fundamentals of Computation Theory, 16th International Sym-
posium. Ed. by Erzsébet Csuhaj-Varjú and Zoltán Ésik. Vol. 4639. Lecture
Notes in Computer Science. Springer, 2007, pp. 435–445. doi: 10.1007/978-
3-540-74240-1_38 (cit. on p. 75).

[MV19] Michele Mosca and Sebastian R. Verschoor. Factoring semi-primes with
(quantum) SAT-solvers. Feb. 2019. arXiv: 1902 . 01448 [cs.CR] (cit. on
p. 174).

[MVV20] Michele Mosca, João Marcos Vensi Basso, and Sebastian R Verschoor. “On
speeding up factoring with quantum SAT solvers”. In: Scientific Reports
10.15022 (Sept. 2020), pp. 1–8. doi: 10.1038/s41598-020-71654-y (cit. on
p. 175).

[MVW13] Abel Molina, Thomas Vidick, and John Watrous. “Optimal Counterfeiting
Attacks and Generalizations for Wiesner’s Quantum Money”. In: Theory of
Quantum Computation, Communication, and Cryptography. Ed. by Kazuo
Iwama, Yasuhito Kawano, and Mio Murao. Berlin, Heidelberg: Springer,
2013, pp. 45–64. isbn: 978-3-642-35656-8. doi: 10.1007/978-3-642-35656-
8_4 (cit. on p. 87).

[NC10] Michael A. Nielsen and Isaac Chuang. Quantum computation and quantum
information. Cambridge University Press, 2010. isbn: 978-1-107-00217-3 (cit.
on p. 69).

[NIST17] Post-Quantum Cryptography. National Institute of Standards and Technol-
ogy, 2017. url: https : / / csrc . nist . gov / projects / post - quantum -
cryptography (visited on 08/07/2021) (cit. on pp. 3, 19, 104, 145).

[NRS18] Moni Naor, Lior Rotem, and Gil Segev. “The Security of Lazy Users in Out-
of-Band Authentication”. In: Theory of Cryptography - 16th International
Conference. Ed. by Amos Beimel and Stefan Dziembowski. Vol. 11240. Lec-
ture Notes in Computer Science. Springer, 2018, pp. 575–599. doi: 10.1007/
978-3-030-03810-6_21 (cit. on p. 107).

[NSA20] NSA. Quantum Key Distribution (QKD) and Quantum Cryptography (QC).
2020. url: https://www.nsa.gov/what-we-do/cybersecurity/quantum-
key - distribution - qkd - and - quantum - cryptography - qc/ (visited on
08/07/2021) (cit. on p. 9).

166

https://doi.org/10.1007/978-3-540-74240-1_38
https://doi.org/10.1007/978-3-540-74240-1_38
https://arxiv.org/abs/1902.01448
https://doi.org/10.1038/s41598-020-71654-y
https://doi.org/10.1007/978-3-642-35656-8_4
https://doi.org/10.1007/978-3-642-35656-8_4
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-030-03810-6_21
https://doi.org/10.1007/978-3-030-03810-6_21
https://www.nsa.gov/what-we-do/cybersecurity/quantum-key-distribution-qkd-and-quantum-cryptography-qc/
https://www.nsa.gov/what-we-do/cybersecurity/quantum-key-distribution-qkd-and-quantum-cryptography-qc/

[Oka92] Tatsuaki Okamoto. “Provably Secure and Practical Identification Schemes
and Corresponding Signature Schemes”. In: Advances in Cryptology -
CRYPTO ’92. Ed. by Ernest F. Brickell. Vol. 740. Lecture Notes in Com-
puter Science. Springer, 1992, pp. 31–53. doi: 10.1007/3-540-48071-4_3
(cit. on p. 108).

[OTR] Ian Goldberg and the OTR Development Team. Off-the-Record Messaging.
2016. url: https://otr.cypherpunks.ca/ (visited on 08/07/2021) (cit. on
p. 42).

[OTRv4] The OTR team. Off-the-Record Messaging Protocol version 4. 2020. url:
https://bugs.otr.im/otrv4/otrv4/ (visited on 08/07/2021) (cit. on
p. 105).

[PAB+07] Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar,
and Valerio Scarani. “Device-Independent Security of Quantum Cryptogra-
phy against Collective Attacks”. In: Physical Review Letters 98.230501 (June
2007). doi: 10.1103/PhysRevLett.98.230501 (cit. on p. 12).

[PNM+05] M. Peev, M. Nölle, O. Maurhardt, T. Lorünser, M. Suda, A. Poppe, R. Ursin,
A. Fedrizzi, and A. Zeilinger. “A Novel Protocol-Authentication Algorithm
Ruling Out a Man-in-the-Middle Attack in Quantum Cryptography”. In: In-
ternational Journal of Quantum Information 3.1 (2005), pp. 225–231. doi:
10.1142/S0219749905000797 (cit. on p. 22).

[Por14] Christopher Portmann. “Key Recycling in Authentication”. In: IEEE Trans-
actions on Information Theory 60.7 (2014), pp. 4383–4396. doi: 10.1109/
TIT.2014.2317312 (cit. on p. 17).

[PPS07] Kenneth G Paterson, Fred Piper, and Rüdiger Schack. “Quantum cryptog-
raphy: a practical information security perspective”. In: NATO Science for
Peace and Security Series – D: Information and Communication Security 11
(2007), p. 175. arXiv: quant-ph/0406147 (cit. on p. 12).

[PR14] Christopher Portmann and Renato Renner. Cryptographic security of quan-
tum key distribution. Sept. 2014. arXiv: 1409 . 3525 [quant-ph] (cit. on
p. 52).

[PRE20] Alasdair B. Price, John G. Rarity, and Chris Erven. “A quantum key dis-
tribution protocol for rapid denial of service detection”. In: EPJ Quantum
Technology 7.8 (May 2020). doi: 10.1140/epjqt/s40507-020-00084-6
(cit. on pp. 20, 22).

167

https://doi.org/10.1007/3-540-48071-4_3
https://otr.cypherpunks.ca/
https://bugs.otr.im/otrv4/otrv4/
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1142/S0219749905000797
https://doi.org/10.1109/TIT.2014.2317312
https://doi.org/10.1109/TIT.2014.2317312
https://arxiv.org/abs/quant-ph/0406147
https://arxiv.org/abs/1409.3525
https://doi.org/10.1140/epjqt/s40507-020-00084-6

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Tech.
rep. TR-81. Aiken Computation Lab, Harvard University, 1981. Cryptology
ePrint Archive: 2005/187 (cit. on p. 119).

[RČ10] Kasper Bonne Rasmussen and Srdjan Čapkun. “Realization of RF Dis-
tance Bounding”. In: 19th USENIX Security Symposium. USENIX As-
sociation, Aug. 2010. url: https : / / www . usenix . org / conference /
usenixsecurity10 / realization - rf - distance - bounding (visited on
08/07/2021) (cit. on pp. 57, 61).

[Res00] E. Rescorla. HTTP Over TLS. RFC 2818. RFC Editor, May 2000. doi: 10.
17487/RFC2818 (cit. on p. 103).

[Res18] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. RFC Editor, Aug. 2018. doi: 10.17487/RFC8446 (cit. on p. 103).

[RGTS07] Jason Reid, Juan M. González Nieto, Tee Tang, and Bouchra Senadji. “De-
tecting Relay Attacks with Timing-based Protocols”. In: Proceedings of the
2nd ACM Symposium on Information. ASIACCS ’07. ACM, 2007, pp. 204–
213. isbn: 1-59593-574-6. doi: 10.1145/1229285.1229314 (cit. on p. 63).

[Rin21] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Trans-
fer Library. 2021. url: https://github.com/osu-crypto/libOTe (cit. on
p. 129).

[RR17] Peter Rindal and Mike Rosulek. “Malicious-Secure Private Set Intersection
via Dual Execution”. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. Ed. by Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu. ACM, 2017, pp. 1229–1242.
doi: 10.1145/3133956.3134044 (cit. on pp. 7, 104, 109, 124, 132, 133).

[RR20] Joseph M. Renes and Renato Renner. Are quantum cryptographic security
claims vacuous? Oct. 2020. arXiv: 2010.11961 [quant-ph] (cit. on p. 12).

[RTŠ+12] Aanjhan Ranganathan, Nils Ole Tippenhauer, Boris Škorić, Dave Singelée,
and Srdjan Čapkun. “Design and Implementation of a Terrorist Fraud Re-
silient Distance Bounding System”. In: Computer Security – ESORICS 2012.
Ed. by Sara Foresti, Moti Yung, and Fabio Martinelli. Berlin, Heidelberg:
Springer, 2012, pp. 415–432. isbn: 978-3-642-33167-1. doi: 10.1007/978-3-
642-33167-1_24 (cit. on p. 61).

[Rud02] Terry Rudolph. The Laws of Physics and Cryptographic Security. Feb. 2002.
arXiv: quant-ph/0202143 (cit. on p. 12).

168

https://eprint.iacr.org/2005/187
https://www.usenix.org/conference/usenixsecurity10/realization-rf-distance-bounding
https://www.usenix.org/conference/usenixsecurity10/realization-rf-distance-bounding
https://doi.org/10.17487/RFC2818
https://doi.org/10.17487/RFC2818
https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/1229285.1229314
https://github.com/osu-crypto/libOTe
https://doi.org/10.1145/3133956.3134044
https://arxiv.org/abs/2010.11961
https://doi.org/10.1007/978-3-642-33167-1_24
https://doi.org/10.1007/978-3-642-33167-1_24
https://arxiv.org/abs/quant-ph/0202143

[RW03] Renato Renner and Stefan Wolf. “Unconditional Authenticity and Privacy
from an Arbitrarily Weak Secret”. In: Advances in Cryptology - CRYPTO
2003. Ed. by Dan Boneh. Vol. 2729. Lecture Notes in Computer Science.
Springer, 2003, pp. 78–95. doi: 10.1007/978-3-540-45146-4_5 (cit. on
p. 17).

[RW04] Renato Renner and Stefan Wolf. “The Exact Price for Unconditionally Secure
Asymmetric Cryptography”. In: Advances in Cryptology - EUROCRYPT. Ed.
by Christian Cachin and Jan L. Camenisch. Berlin, Heidelberg: Springer,
May 2004, pp. 109–125. isbn: 978-3-540-24676-3. doi: 10.1007/978-3-540-
24676-3_7 (cit. on p. 17).

[Sch89] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart
Cards”. In: Advances in Cryptology - CRYPTO ’89. Ed. by Gilles Brassard.
Vol. 435. Lecture Notes in Computer Science. Springer, 1989, pp. 239–252.
doi: 10.1007/0-387-34805-0_22 (cit. on p. 108).

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Nov. 2004. Cryptology ePrint Archive: 2004/332 (cit. on p. 137).

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring”. In: 35th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society, 1994, pp. 124–134. doi: 10.1109/SFCS.
1994.365700 (cit. on pp. 2, 104, 109).

[SHWR16] Svenja Schröder, Markus Huber, David Wind, and Christoph Rottermanner.
“When Signal hits the fan: On the usability and security of state-of-the-art
secure mobile messaging”. In: European Workshop on Usable Security. IEEE.
2016, pp. 1–7. doi: 10.14722/eurousec.2016.23012 (cit. on p. 106).

[SM16] Douglas Stebila and Michele Mosca. “Post-quantum Key Exchange for the
Internet and the Open Quantum Safe Project”. In: Selected Areas in Cryptog-
raphy - SAC 2016. Ed. by Roberto Avanzi and Howard M. Heys. Vol. 10532.
Lecture Notes in Computer Science. Springer, 2016, pp. 14–37. doi: 10.
1007/978-3-319-69453-5_2 (cit. on pp. 131, 143).

[SML09] Douglas Stebila, Michele Mosca, and Norbert Lütkenhaus. “The Case for
Quantum Key Distribution”. In: Quantum Communication and Quantum
Networking. Ed. by Alexander V. Sergienko, Saverio Pascazio, and Paolo
Villoresi. Vol. 36. Lecture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering. Springer, Oct. 2009,
pp. 283–296. doi: 10.1007/978-3-642-11731-2_35 (cit. on pp. 14, 45, 55).

169

https://doi.org/10.1007/978-3-540-45146-4_5
https://doi.org/10.1007/978-3-540-24676-3_7
https://doi.org/10.1007/978-3-540-24676-3_7
https://doi.org/10.1007/0-387-34805-0_22
https://eprint.iacr.org/2004/332
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.14722/eurousec.2016.23012
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-642-11731-2_35

[Son14] Fang Song. “A Note on Quantum Security for Post-Quantum Cryptography”.
In: Post-Quantum Cryptography. Ed. by Michele Mosca. Cham: Springer
International Publishing, 2014, pp. 246–265. isbn: 978-3-319-11659-4. doi:
10.1007/978-3-319-11659-4_15 (cit. on pp. 139, 140).

[SPD+10] Louis Salvail, Momtchil Peev, Eleni Diamanti, Romain Alléaume, Norbert
Lütkenhaus, and Thomas Länger. “Security of trusted repeater quantum key
distribution networks”. In: Journal of Computer Security 18.1 (Jan. 2010),
pp. 61–87. issn: 0926-227X. doi: 10.3233/JCS-2010-0373 (cit. on p. 12).

[SSM18] Maliheh Shirvanian, Nitesh Saxena, and Dibya Mukhopadhyay. “Short voice
imitation man-in-the-middle attacks on Crypto Phones: Defeating humans
and machines”. In: Journal of Computer Security 26.3 (2018), pp. 311–333.
doi: 10.3233/JCS-17970 (cit. on p. 107).

[SYG08] Ryan Stedman, Kayo Yoshida, and Ian Goldberg. “A user study of off-the-
record messaging”. In: SOUPS. ACM International Conference Proceeding
Series. ACM, 2008, pp. 95–104. doi: 10.1145/1408664.1408678 (cit. on
p. 107).

[TP07] Yu-Ju Tu and Selwyn Piramuthu. “RFID distance bounding protocols”. In:
First International EURASIP Workshop on RFID Technology. Vienna, Aus-
tria, 2007, pp. 67–68. url: https://www.eurasip.org/Proceedings/Ext/
RFID2007/pdf/s5p2.pdf (visited on 08/07/2021) (cit. on p. 94).

[TSJL21] Oleg Taraskin, Vladimir Soukharev, David Jao, and Jason T. LeGrow. “To-
wards Isogeny-Based Password-Authenticated Key Establishment”. In: Jour-
nal of Mathematical Cryptology 15.1 (2021), pp. 18–30. doi: doi:10.1515/
jmc-2020-0071 (cit. on p. 124).

[UDB+15] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl,
Ian Goldberg, and Matthew Smith. “SoK: Secure Messaging”. In: 2015 IEEE
Symposium on Security and Privacy, SP 2015. IEEE Computer Society, 2015,
pp. 232–249. doi: 10.1109/SP.2015.22 (cit. on pp. 102, 106).

[UG18] Nik Unger and Ian Goldberg. “Improved Strongly Deniable Authenticated
Key Exchanges for Secure Messaging”. In: Proceedings on Privacy Enhancing
Technologies 2018.1 (2018), pp. 21–66. doi: 10.1515/popets-2018-0003
(cit. on p. 105).

[Ung21] Unger, Nik. “End-to-End Encrypted Group Messaging with Insider Security”.
PhD thesis. 2021. url: http://hdl.handle.net/10012/17196 (cit. on
p. 141).

170

https://doi.org/10.1007/978-3-319-11659-4_15
https://doi.org/10.3233/JCS-2010-0373
https://doi.org/10.3233/JCS-17970
https://doi.org/10.1145/1408664.1408678
https://www.eurasip.org/Proceedings/Ext/RFID2007/pdf/s5p2.pdf
https://www.eurasip.org/Proceedings/Ext/RFID2007/pdf/s5p2.pdf
https://doi.org/doi:10.1515/jmc-2020-0071
https://doi.org/doi:10.1515/jmc-2020-0071
https://doi.org/10.1109/SP.2015.22
https://doi.org/10.1515/popets-2018-0003
http://hdl.handle.net/10012/17196

[Unr13] Dominique Unruh. “Everlasting Multi-party Computation”. In: Advances in
Cryptology – CRYPTO 2013. Ed. by Ran Canetti and Juan A. Garay. Berlin,
Heidelberg: Springer, 2013, pp. 380–397. isbn: 978-3-642-40084-1. doi: 10.
1007/978-3-642-40084-1_22 (cit. on pp. 9, 13).

[Vau13] Serge Vaudenay. “On Modeling Terrorist Frauds”. In: Provable Security. Ed.
by Willy Susilo and Reza Reyhanitabar. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 1–20. isbn: 978-3-642-41227-1. doi: 10.1007/978-3-
642-41227-1_1 (cit. on p. 66).

[Ver15] Sebastian R. Verschoor. SCimp Proverif models. Dec. 2015. url: https:
//github.com/sebastianv89/scimp-proverif (visited on 08/07/2021)
(cit. on p. 174).

[Ver18] Sebastian R. Verschoor. qbdb. Sept. 2018. url: https : / / github . com /
sebastianv89/qbdb (visited on 08/07/2021) (cit. on p. 84).

[Ver19] Sebastian R. Verschoor. factoring-sat (GitHub repository). Jan. 2019.
url: https://github.com/sebastianv89/factoring- sat (visited on
08/07/2021) (cit. on p. 174).

[Ver21] Sebastian R. Verschoor. libkop. July 2021. url: https://github.com/
sebastianv89/libkop (cit. on pp. 104, 142, 148).

[VL16] Sebastian R. Verschoor and Tanja Lange. (In-)Secure messaging with the
Silent Circle instant messaging protocol. July 2016. Cryptology ePrint
Archive: 2016/703 (cit. on p. 174).

[VV19] João Marcos Vensi Basso and Sebastian R. Verschoor. NFS-SAT. Oct. 2019.
url: https://github.com/sebastianv89/NFS-SAT (visited on 08/07/2021)
(cit. on p. 175).

[VWO+17] Elham Vaziripour, Justin Wu, Mark O’Neill, Jordan Whitehead, Scott Heid-
brink, Kent E. Seamons, and Daniel Zappala. “Is that you, Alice? A Usability
Study of the Authentication Ceremony of Secure Messaging Applications”.
In: Thirteenth Symposium on Usable Privacy and Security, SOUPS 2017.
USENIX Association, 2017, pp. 29–47. url: https://www.usenix.org/
conference/soups2017/technical-sessions/presentation/vaziripour
(visited on 08/07/2021) (cit. on p. 107).

171

https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1007/978-3-642-41227-1_1
https://doi.org/10.1007/978-3-642-41227-1_1
https://github.com/sebastianv89/scimp-proverif
https://github.com/sebastianv89/scimp-proverif
https://github.com/sebastianv89/qbdb
https://github.com/sebastianv89/qbdb
https://github.com/sebastianv89/factoring-sat
https://github.com/sebastianv89/libkop
https://github.com/sebastianv89/libkop
https://eprint.iacr.org/2016/703
https://github.com/sebastianv89/NFS-SAT
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/vaziripour
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/vaziripour

[VWO+18] Elham Vaziripour, Justin Wu, Mark O’Neill, Daniel Metro, Josh Cockrell,
Timothy Moffett, Jordan Whitehead, Nick Bonner, Kent E. Seamons, and
Daniel Zappala. “Action Needed! Helping Users Find and Complete the Au-
thentication Ceremony in Signal”. In: Fourteenth Symposium on Usable Pri-
vacy and Security, SOUPS 2018. Ed. by Mary Ellen Zurko and Heather
Richter Lipford. USENIX Association, 2018, pp. 47–62. url: https://www.
usenix.org/conference/soups2018/presentation/vaziripour (visited
on 08/07/2021) (cit. on pp. 106, 107).

[Wat18] John Watrous. The theory of quantum information. Cambridge University
Press, Apr. 2018. isbn: 9781107180567 (cit. on pp. 69, 71, 74).

[WC81] Mark N. Wegman and Larry Carter. “New Hash Functions and Their Use
in Authentication and Set Equality”. In: Journal of Computer and System
Sciences 22.3 (June 1981), pp. 265–279. doi: 10.1016/0022- 0000(81)
90033-7 (cit. on pp. 10, 16, 17).

[Wer98] R. F. Werner. “Optimal cloning of pure states”. In: Physical Review A 58.3
(Sept. 1998), pp. 1827–1832. doi: 10.1103/PhysRevA.58.1827 (cit. on
p. 87).

[WGH+19] Justin Wu, Cyrus Gattrell, Devon Howard, Jake Tyler, Elham Vaziripour,
Daniel Zappala, and Kent E. Seamons. ““Something isn’t secure, but I’m not
sure how that translates into a problem”: Promoting autonomy by design-
ing for understanding in Signal”. In: Fifteenth Symposium on Usable Privacy
and Security, SOUPS 2019. Ed. by Heather Richter Lipford. USENIX As-
sociation, 2019. url: https://www.usenix.org/conference/soups2019/
presentation/wu (visited on 08/07/2021) (cit. on p. 106).

[Wie83] Stephen Wiesner. “Conjugate Coding”. In: SIGACT News 15.1 (Jan. 1983),
pp. 78–88. issn: 0163-5700. doi: 10.1145/1008908.1008920 (cit. on p. 87).

[WT99] Alma Whitten and J. D. Tygar. “Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0”. In: 8th USENIX Security Symposium. Aug. 1999.
url: https://www.usenix.org/conference/8th- usenix- security-
symposium/why-johnny-cant-encrypt-usability-evaluation-pgp-50
(visited on 08/07/2021) (cit. on p. 105).

[WZ82] W.K Wootters and W. H. Zurek. “A single quantum cannot be cloned”. In:
Nature 299 (Oct. 1982). doi: 10.1038/299802a0 (cit. on pp. 3, 57, 87).

172

https://www.usenix.org/conference/soups2018/presentation/vaziripour
https://www.usenix.org/conference/soups2018/presentation/vaziripour
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1103/PhysRevA.58.1827
https://www.usenix.org/conference/soups2019/presentation/wu
https://www.usenix.org/conference/soups2019/presentation/wu
https://doi.org/10.1145/1008908.1008920
https://www.usenix.org/conference/8th-usenix-security-symposium/why-johnny-cant-encrypt-usability-evaluation-pgp-50
https://www.usenix.org/conference/8th-usenix-security-symposium/why-johnny-cant-encrypt-usability-evaluation-pgp-50
https://doi.org/10.1038/299802a0

[XKCP] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Ass-
che, and Ronny Van Keer. eXtended Keccak Code Package. url: https:
//github.com/XKCP/XKCP (visited on 08/07/2021) (cit. on p. 143).

[Zim95] Philip R. Zimmermann. The official PGP user’s guide. MIT press, 1995.
isbn: 0-262-74017-6 (cit. on pp. 103, 105).

173

https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP

Appendix

Other work by the author

• SRV and Tanja Lange [VL16]. “(In-)Secure messaging with the Silent Circle instant
messaging protocol.”

– Proverif models of SCimp [Ver15].

This work analyzes the Silent Circle instance messaging protocol (SCimp), a secure
messaging protocol that historically sits between Off-the-Record Messaging (OTR)
and Signal. The work comprises a formal analysis in Proverif and reports vulnera-
bilities that were found, and includes an analysis of the source code. While the bulk
of this work was done at Eindhoven University of Technology as part of my Master’s
thesis, this version of the work was prepared at the start of my PhD program at the
University of Waterloo.

• Jennifer Katherine Fernick and SRV [FV17]. “Privacy-Preserving Patent Search: Ad-
dictively Homomorphic Encryption Techniques for Private Text Mining over Public
Datasets.”

– Experiment source code [FV16].

This work considers the applicability of somewhat homomorphic encryption to secure
text mining.

• Michele Mosca and SRV [MV19]. “Factoring semi-primes with (quantum) SAT-
solvers.”

– Circuits, experiment source code and results [Ver19].

174

Experimental results in quantum annealing report factorizations of increasingly large
semi-primes. The underlying algorithms effectively reduce factoring to an NP-hard
problem. In this paper we study and question the practical effectiveness of this
approach. We find no evidence that this is a viable path towards factoring large
numbers.

• Michele Mosca, João Marcos Vensi Basso and SRV [MVV20]. “On speeding up fac-
toring with quantum SAT solvers”.

– Circuits, experiment source code and results [VV19].

In an extension of the above work, we attempt to factor numbers by applying (quan-
tum) SAT solving to finding smooth numbers as a step in the number field sieve.
The result has the same asymptotic runtime as the classical number field sieve and
can theoretically benefit from quadratic quantum speedup to enable faster factoring.
Benchmarks indicate there is massive overhead to this approach that needs to be
overcome.

175

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Quantum information
	Security protocols
	Ceremonies
	Protocol aborts

	Contributions
	Terminology

	Conventions

	Preventing key exhaustion in quantum key distribution
	Introduction
	Outline

	Background
	quantum key distribution
	message authentication codes
	hash-based signatures
	BB84-AES

	Key exhaustion
	Aborts
	Consequences beyond availability
	Key exhaustion against computational cryptosystems
	Key exhaustion without computational cryptosystems

	A decoy-based mitigation
	Construction
	Analysis
	Improvement

	A ratchet-based mitigation
	Construction
	A balanced variant

	Mitigation comparison
	Combining the mitigations

	Security considerations
	Computationally authenticated channel
	Local state management
	Parallelism
	Side-channel analysis

	Discussion

	Terrorist fraud in quantum distance bounding
	Introduction
	Outline

	Background
	Classical distance bounding
	Quantum information

	Quantum distance bounding
	Unproven (in)security

	AMSP protocol
	Key-extraction under XOR encryption
	terrorist fraud
	Improved analysis

	Abidin's protocol
	Key-extraction under XOR encryption
	terrorist fraud
	Improved analysis

	improved RAD protocol
	Key-extraction under XOR encryption
	terrorist fraud
	Improved analysis

	Fixing the IRAD protocol
	Analysis
	Comparison to Swiss-Knife

	Discussion

	Key authentication from post-quantum key encapsulation mechanisms and signatures
	Introduction
	Contributions
	Notation

	Background
	Off-the-Record Messaging
	Authentication ceremonies
	socialist millionaire protocol
	Private equality test
	universal composability
	Random oracle model
	oblivious transfer
	Split functionalities
	password authenticated key exchange

	Protocol
	oblivious transfer
	private equality confirmation
	Split private equality confirmation

	Implementation
	Side-channel protection
	Measurements

	Discussion

	Conclusion
	References
	Appendix

