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Abstract. Machine learning on encrypted data is an emerging field that can be 
used for a variety of real-world applications. A particular application might be 
where a user has an idea for an innovative technology, and would like to confi-
dentially submit their idea to an external platform that can semantically analyze 
their idea and return whether this idea has already been patented, without anyone 
other than the user being privy to her idea. The generalization of such a construc-
tion would be when a user wishes to make a private query to a public or third-
party dataset, while maintaining the confidentiality of their query. In this paper, 
we make use of somewhat-homomorphic privacy- preserving building blocks for 
machine learning to enable this type of analysis, while extending and optimizing 
known theoretical constructions. 
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1 Introduction  

In this paper, we construct a system for text- mining which allows a user to submit as 
input an encrypted patent idea to a patent database, and determine whether her idea has 
already been patented, receiving references to related patents as output. In contrast to 
existing techniques for patent search, this one preserves the confidentiality of the user’s 
search such that neither the server nor a third- party adversary will be able to learn the 
user’s unpatented idea.  

The major contributions of this paper are: (1) To offer techniques for secure text 
mining based on known primitives for machine learning on encrypted data; (2) To im-
plement these techniques and offer an application enabling users to confidentially val-
idate the uniqueness of their intellectual property against a patent database; (3) To rep-
licate the results of an important and elegant paper on machine learning over encrypted 
data [1]; and (4) Extending and optimizing upon the techniques suggested in prior 
works [1]. 
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This paper presents prior art and our present efforts across several sections. In Sec-
tion 2, we outline our specific application scenario, highlight the motivation for this 
work, and present our security model. In Section 3, we offer prerequisite knowledge on 
machine learning, and in Section 4, a literature review on the convergences between 
machine learning/data mining, natural language processing, and computing on en-
crypted data. In Section 5, we articulate our research objectives and demonstrate our 
set-up, implementation, and results. In Section 6, we discuss our findings, and in Sec-
tion 7, we offer directions for future work. 

2 Introduction  

2.1 Scenario 

We can imagine a scenario where a user has an idea for an innovative technology, and 
they would like to know whether there are any existing patents or other intellectual 
property restrictions upon their idea. To learn this, they must find all similar ideas to 
theirs from within a database of patents. This is difficult for a few reasons. Firstly, the 
database of patents is large and they would like to use efficient computational methods 
to narrow down the amount of physical searching and consequent reading that they, the 
user, must perform. Secondly, the English keywords representing their idea might have 
semantic similarity to other keywords that are used for a relevant patent, but this patent 
will be overlooked if they do not query using the particular keyword used in the docu-
mentation of the patent. Thirdly, since their idea is valuable and patentable, and the 
database is a large and frequently-updated online repository, they would like to be able 
to perform their patent search without revealing the words that they are using to perform 
the search. 

 
2.2 Motivation 

This case study is motivated by a more general problem, which is that the status quo of 
information on the internet is that there are large volumes of useful data, but an absence 
of privacy and security in interacting with these datasets and the data mining tools that 
can efficiently operate upon them. 

This problem can be generalized to the following: A user (client) would like to per-
form a text-based search of a database (server), that both keeps secret the contents of 
their search, as well as improves relevance of matches by finding close-proximity key-
words and finds database entries containing those similar keywords.  

 
2.3 Security Model 

Stating a precise security model is essential to making meaningful statements about 
mining on encrypted data. In our model, the user (client) trusts themselves and their 
local computing environment, and can safely assume that the encryption scheme is se-
mantically secure against a polynomial-time adversary, and that no parties beside the 
user themself has access to the user’s private keys. They can assume that the server is 
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semi-honest (honest- but-curious), and that any attacks mounted on the system by the 
server or by a third party are poly- time computationally bounded. 

3 Preliminaries   

3.1 Machine Learning  

For computing to be powerful in complex, real-world systems, it must be able to suc-
cessfully extract relevant and concise insights from complex datasets. Since machine 
learning offers powerful techniques for performing this analysis on distributions of 
data, it is increasing in social and technical importance. Machine learning algorithms 
take as input a collection of samples (“training” data) and build models that capture 
some [hopefully] important relationships between features of the underlying dataset. 
Using this model, they can analyze future samples (“user” data) to perform actions like 
regression, classification, or clustering, to consequently output categorical or numerical 
labels or information regarding a given sample. As noted by [1], while machine learning 
models are necessarily more compact than the original training dataset, they also must 
necessarily capture some information about that dataset. As such, these models are 
themselves a variably rich source of information. 

Machine learning can be discovered and represented using different kinds of models 
and techniques, depending on the type of task to be performed. To simplify for the 
purposes of this paper, we can consider two primary types of machine learning to exist: 
 

1. Supervised Learning: This is the approach in which a labelled training set 
has been used to create a machine learning model, and user queries involve 
inputting unlabeled pieces of data and receiving the generated label for that 
data point as output. 

2. Unsupervised Learning: In this approach, the dataset is unlabeled and sta-
tistical techniques are used to find patterns within the dataset. The most 
notable category of unsupervised learning is Clustering, whereby a set of 
unlabeled samples is grouped into several clusters, based on the similarity 
relations of the feature vectors of the samples.  
 

Together, these two categories cover the primary algorithmic tools we will consider for 
our computational problem. But how might these tools be applied to encrypted data?  

4 Literature Review 

This area of research unites fields such as machine learning/data mining, natural lan-
guage processing, and computing on encrypted data. In particular, prior work on text 
mining, machine learning on encrypted data, and statistics are relevant to our work. In 
this section, we begin by reviewing work that has been performed to enable machine 
learning algorithms to be applied to encrypted datasets. We then proceed to review 
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current work in text mining, and draw conclusions about how text mining may be ap-
plied in a privacy-preserving scenario. 
 
4.1 Machine Learning on Encrypted Data  

Machine learning is an increasingly ubiquitous technology which allows real-world 
systems to efficiently deal with complex information. Machine learning as a field rep-
resents an important step between user-initiated task-specific computing, and auto-
mated decision-making. Given the volume of data on the internet and the sizes of da-
tasets required for modern technologies such as smart homes, self- driving cars, auto-
mated financial advisors and other forms of informational and decision-making auto-
mation, machine learning is the reason that these tasks can be performed in real-time 
on dynamic and complex datasets and thus that these types of technologies can even 
exist at all. In the context of patent searches, machine learning presents an opportunity 
to classify large numbers of patents and recommend similar patents, to help users better 
understand the intellectual property landscape, rather than being limited to string-
matching on their specific input queries, which can leave many related documents un-
noticed. 

With all of the benefit that machine learning provides in discovering information and 
correlations, there often exist corresponding deficiencies in privacy-preservation or se-
curity for these systems. Relatedly, for systems where privacy and/or security come 
first, machine learning has been previously unavailable. Various research efforts into 
the performance of machine learning algorithms on encrypted data have opened new 
avenues for data mining, while defining and limiting compromises to security and pri-
vacy of data. 

 
Secure Multi-Party Computation (MPC) refers to a cryptographic subfield with the 
objective of allowing multiple parties to compute a function over their collective inputs 
while maintaining the privacy of the individual inputs, such that the group members 
may know the result of the computation but not learn the values of the other individuals’ 
inputs. As it is known that any distributed computing task can be securely computed 
[26], we can conclude that an arbitrary function – including a machine learning con-
struction – could be built from canonical Secure MPC tools such as [21], [22], [23], 
[24], [25]. However, it is widely accepted in the cryptographic community that these 
rigorous tools are computationally expensive and likely infeasible (or at the very least, 
suboptimal in terms of performance) for common machine learning classifiers. 
 
Homomorphic Encryption is a branch of secure MPC whereby operations can be per-
formed on a ciphertext to have corresponding operations occur to the plaintext, allow-
ing the party performing computation to compute on data for which it does not know 
the ciphertext [26]. (Fully) Homomorphic encryption schemes have been used to per-
form machine learning on encrypted data. In these constructions, a fully homomorphic 
encryption scheme capable of computing an arbitrary function on encrypted data is used 
to construct the underlying functions for specific machine learning algorithms. While 
these approaches have very strong security guarantees, and are quite generalizable (i.e.: 
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in the fully-homomorphic case, they can be used to construct an arbitrary function), 
they tend to be inefficient compared to all other techniques for machine learning on 
encrypted data. As highlighted by [1], they also suffer from unique limitations that nar-
row the range of learning algorithms that can be implemented fully homomorphically. 
These limitations include: (1) Using these schemes, one cannot encrypt arbitrary real 
values; (2) Post- encryption, the ciphertext size grows several orders of magnitude; (3) 
Fully-homomorphic techniques are computationally expensive, especially for anything 
multiplicative; and (4) Fully-homomorphic schemes place limits on the depth of oper-
ations to be performed, and have the consequent requirement to bootstrap. 
 
Privacy-Preserving Approaches to Machine Learning on Encrypted Data also ex-
ist. These differ from fully-homomorphic approaches in that the functions used to com-
pute the specific subroutines of the machine learning algorithms are generally not con-
structed fully-homomorphically. Instead, these constructions make use of other crypto-
graphic tools such as somewhat homomorphic encryption or secure multi-party com-
putation. While the somewhat-homomorphic techniques are more limited in applicabil-
ity than fully-homomorphic techniques, they are generally far more efficient [1]. It is 
important to note that different instantiations of privacy-preserving machine learning 
may even have different definitions of “privacy” – some of these scenarios attempt to 
maintain the privacy of the training data, while a smaller number of them seek to main-
tain the privacy of the classification process. (In the use case presently under study, it 
is indeed the privacy of the classification that is our concern). In addition, security in 
these constructions can be a wildcard and the comparisons of a scheme’s relative secu-
rity to another scenario is rarely apples-to- apples. Since these techniques rely upon 
constructions with varying security properties, different definitions of “privacy” and 
are deployed in a variety of architectures to protect different subsets of information 
assets, there is no generic statement that can be made about their security. Rather, each 
construction in a given model must be evaluated in turn. 

Perhaps the most interesting of these approaches are those which make use of addi-
tively homomorphic encryption schemes to construct reasonably-efficient building 
blocks for the subsequent construction of encrypted-data versions of canonical machine 
learning algorithms, where the statistical tools underlying these algorithms can be per-
formed additively homomorphically. This is the technique exposited in [1], and which 
serves as the closest technical influence upon our present work. 

A subset of privacy-preserving machine learning approaches are those that make use 
of differential privacy. Differential privacy is the idea that when you have two datasets 
(D1 and D2), differing in at most one element, the mechanism must satisfy a formula 
that ensures that the log of the probability of the mechanism for a given dataset divided 
by the log of the probability of the mechanism for the other data set falls within some 
privacy budget, epsilon. This essentially means that the removal of a specific individual 
from a dataset should not change computation on the dataset, and therefore that the 
individual’s privacy is maintained even when they are present within the larger dataset. 
These constructions are special because they seek to bound information loss on a single 
user (or that user’s data) through the addition of noise to the training/test dataset. This 
allows for machine learning to be efficiently performed over the dataset with small and 
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bounded impact upon an individual user’s privacy for data that is included in the learn-
ing model. These techniques in general focus on keeping the individuals in the train-
ing/test dataset safe, and do not account for securing the classifier itself [19]. A down-
side to differential privacy is that there is generally a trade-off between privacy and 
accuracy of the model, since both are contingent upon the addition of noise. However, 
some constructions exist [20] that deal meaningfully with the trade-off between privacy 
and accuracy in differentially private learning models and offer optimization and guid-
ance.  
 
Metadata-based approaches. For the sake of completeness, it is worth considering 
one other approach to machine learning on encrypted data – namely, the approach in 
which the machine learning can be performed by a third party with no special crypto-
graphic relationship with the user or their data, and the user’s cryptography can be pre-
sumed secure against any polynomial-time adversary. Such approaches perform ma-
chine learning algorithms simply on the metadata of the encrypted data, which could 
include such features as data volume, to/from addresses, geolocation, round- trip times, 
or protocols used. These approaches are useful in cases where a third party wishes to 
learn about patterns within a specific dataset, but does not – for access, regulatory, or 
legal reasons – have the ability to construct the system using one of the other tools 
outlined in this section. This approach has been successfully deployed in real-world 
scenarios such as the detection of anomalous network traffic [4].  
 
While all of these approaches have something interesting to offer the field, for our se-
lected use case – and indeed, for most user-centered Platform- as-a-Service type of data 
mining on the internet – the homomorphic/privacy-preserving constructions show the 
most immediate applicability. These constructions would include techniques based on 
secure multi-party computation, fully homomorphic encryption (capable of computing 
arbitrary functions, but with the drawback of high computational costs for anything 
making use of multiplicative homomorphism) as well as somewhat-homomorphic 
schemes that can offer the necessary security guarantees to operate on encrypted text. 
We have innovated beyond existing constructions in a practical sense by applying these 
ideas thoughtfully to a complex systems design to solve a real-world problem, and in a 
theoretical sense by optimizing on the constructions in the literature. 

 
4.2 Text Mining and Natural Language Processing   

Substantial work has been performed in the field of machine learning and knowledge 
discovery related to mining textual data. 

Text mining has been performed in the literature through the application of popular 
machine learning techniques onto language. Successful implementations include Naïve 
Bayes [5][6][7], Decision Trees [8][9], k-Nearest Neighbours [10][11][12], Support 
Vector Machines [13][14][15][16], and Artificial Neural Networks [17][18]. In these 
approaches, words in a body of text are taken as feature vectors, and are computed upon 
to output knowledge about a given text, such as a sentiment analysis or a classification 
of the text into a defined category. 
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Notably, all of the algorithms found in our review of general (unencrypted) text min-
ing primitives made use of supervised learning, where labelled data is required for 
training and the output of the algorithm is (at some point) a class for the specific data 
instance. This presents a challenge for solving the particular machine learning problem 
that we had in mind – namely, that of textual similarity. As a consequence, as will be 
articulated later in this paper, our approach needed to involve both algorithm and 
broader systems design to cope with using supervised learning techniques for our use 
case.  

5 Experiment 

5.1 Research Objectives  

The objective of this work is to demonstrate that secure text mining can be performed 
using constructions from the field of machine learning on encrypted data. This enables 
a more sophisticated clustering to be performed than traditional text- matching, which 
can improve the relevance and comprehensiveness of results. 

 
5.2 Systems Architecture   

Our system is constructed in a client-server model, where the client is the entity wishing 
to make a confidential search of the text database, and the server is the cloud service 
which contains the patent records and performs the operations over these records to 
return the results of the query.  

 
5.3 Algorithms   

The prior art of [1] on the development of privacy-preserving machine learning 
schemes through the construction of machine learning primitives using additively ho-
momorphic encryption served as a springboard for the contributions we offer in this 
paper. Their solution to the problem of privacy-preserving data mining was important 
because they created modular building-blocks that can be used to construct a variety of 
canonical machine learning tools, except that the constructions they enabled would 
work over encrypted data. While this could in principle be done for many algorithms 
via fully homomorphic encryption, the authors selected to use additively homomorphic 
encryption, allowing for a great improvement in performance. In the context of machine 
learning – particularly the mining of large datasets – these performance gains are mean-
ingful, since efficiency of computational time and space are particularly important in 
cases where the encryption scheme increases computational overhead, but the problem 
to be solved deals with high data volumes and complex models.  

In our work, we started from the existing implementation of privacy-preserving Na-
ïve Bayes [1]. However, we quickly found some problems with this construction, 
namely the Naive Bayes classifier requires to be initialized with pre- classified data. As 
a proof-of-concept in the first stage of our experimental work, we chose to pick a clas-
sification that was already done in the data, namely the CPC-classification [27]. 
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Given the set of all classes, C, the Naive Bayesian model is computed for each of the 
classes that are present in the training data. The feature vector space, X, is the full col-
lection of all words that are present in any of the data. For every class ci, a prior prob-
ability is computed:  

Pr[C = ci] 
 

Following the original work of [1], we then specified two feature values per feature xj 
per class ci:  

p = Pr[Xj = xj | C = ci] 
 

specifies the conditional probability that a word is present in the text, given that we are 
looking at the class ci. The other value, (1 – p), represents the conditional probability 
that a word is not in the text for the class.  

These probabilities are estimated as follows in the training phase: The prior proba-
bility is simply the ratio of the class to the total number of entries in the training data 
set. Per class i, the conditional probability for each word is estimated as:  

 
(word_count_i + 1) / (total_word_count_j + unique_words_j) 

 
One is added to each probability to avoid multiplications by zero during the classifica-
tion phase and the unique_words_j term is added to renormalize so all probabilities 
add up to one. 

In the regular non-encrypted setting one would classify by multiplying these proba-
bilities. Instead, the (natural) logarithm of each probability is computed. The reason is 
that we can now add the values instead of multiplying them. We are allowed to do this, 
because we are only interested in the relative probabilities, not their absolute values. 
Computing over the logarithms is sometimes also done in a non-encrypted setting in 
order to improve numerical stability. Each log-probability is dynamically scaled and 
truncated so that the entire range fits in a 64-bit integer. This final step allows us to 
work in the plaintext space of the Paillier cryptosystem. 

During the classification phase, the feature vector that the user uses to query the 
model is a binary vector with every entry being one if the word is in the text. Optionally, 
this vector can be computed in a more sophisticated manner by offline preprocessing 
of the query text. The dimension of the vector corresponds to the total words that are in 
the model.  

 
5.4 Implementation and Optimizations   

Our training and test data are sourced from the Patent Grant Full Text database on 
Kaggle [2]. This is a large sample of the Patent Grant Data (Grant Red Book) published 
by the United States Patent and Trademark Office (USPTO). This dataset contains a 
range of entry types, by for our purposes the CPC classifications and the abstract for 
each patent is all that is relevant. It is important to note that this dataset represents a 
single round of granted patent applications from which to build our proof-of- concept 
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– for our tool to be production quality, we would need to actively pull updates from the 
Grant Red Book to the server to ensure that queries led to operations over the most 
recent and complete version of the USPTO database. 

Our machine learning primitives make use of the building blocks for Naïve Bayes 
developed by the authors in [1]: Computing the argmax function over encrypted data 
(using the Quadratic Residue cryptosystem of Goldwasser-Micali [28]) and computing 
additions over encrypted data (using the Paillier cryptosystem [29]). In [1], the authors 
were able to construct useful machine learning primitives for basic tasks that we were 
able to then use to perform textual analysis on the database using encrypted queries. 

Extending their original research, however, we made novel optimizations to their 
construction for Naïve Bayes. Consider: classification is done by computing the for-
mula:  

argmax_{i \in [k]} {log Pr[C = ci] + Sum_jd log Pr(Xj =xj |C=ci)} 
 

There are two simple optimizations we apply to this formula. The first is server-side, 
where we recognize that in the conditional probability: 
 

(Pr[Xj = xj | C = ci]) 
 

each feature can only take two values: 0 and 1. Since the probabilities add to one, we 
can only store the value for Xj = 1 and reduce the total required storage for the model 
to approximately half the original size. The additional advantage is that about half the 
amount of data needs to be sent to the client.  

The second optimization comes at the client side: computing the above formula re-
quires for every class a sum over all conditional probabilities in the model (actually by 
a product when translated to the Paillier cryptosystem). However, a feature vector will 
usually be very sparse. In that case we can benefit from not adding (multiplying) all 
values and instead only add the corresponding probabilities where our feature vector 
takes on the value one. Since the weight of the user feature vector is constant and we 
are only interested in the relative outcomes per class, we can apply this optimization. 
This speeds up the computation client-side without leaking information (the resulting 
sum is never decrypted and only used during the subsequent comparisons in the com-
putation of the argmax function). 

The source code for our work is available at [30].  
 

5.5 Experimental Results  

Below, we offer some performance results from our experiment. For qualitative results, 
we direct the reader to Section 6, Discussion and Conclusions. 
 

Table 1: Client-side computational time savings due to data sparsity  
Sparsity Query time 
100.0%* 600 ms 

50.0% 480 ms 
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25.0% 390 ms 
10.0%  350 ms 
1.0% 320 ms 
0.1% 290 ms 

0.01% 300 ms 

* where 100% sparsity refers to no optimization 
 

Table 1 shows the computational time saved on the client side, by taking advantage of 
the sparsity of the data. The sparsity is expressed as the percentage of features that have 
value one (percentage of all words that are in the text). The first entry should not be 
interpreted as a query with all words, but as the non-optimized version. Here we see 
that even a completely random entry (50%) already has an advantage over the non-
optimized version. Below a sparsity of 1%, the time to compute the Pallier product 
becomes insignificant compared to the time it takes to compute the argmax function. 

 
Table 2: Number of patents per patent class  

Class Patents per class 
A 659 
B 579 
C 390 
D 20 
E 138 
F 350 
G 1518 
H 1713 

 
Table 2 shows the distribution of the data. In	total, the dataset contains 5367 patents, 
which are classified into 8 different CPC classes. The word distribution is extracted 
from the abstract per patent. These abstracts contain 15396 unique words, so that the 
feature vector has a corresponding dimension of 15396. A real-world application might 
want to perform some pruning to this word-list, in order to enhance performance and 
improve accuracy. For our proof of concept, this was not required. 

 
Table 3: Scaling of performance with number of classes 

Classes Total time Data transferred 
8 320 ms 31.0 MB 
4 260 ms 15.0 MB 
2 70 ms 7.9 MB 

 
Table 3 shows how the performance scales with respect to the number of classes. Since 
we have to compute a conditional probability for every class for every feature, the data 
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size is expected to scale linearly with both these parameters. By increasing the number 
of patents, the model size should not increase (although new words could be introduced 
increasing the number of features). Both optimizations have been applied and all entries 
were computed with a sparsity of 1%.  

6 Discussion and Conclusions  

We began this paper by seeking to understand known constructs for machine learning 
on encrypted data, and how machine learning techniques can be used to perform text 
mining. Together, these fields could enable us to offer solutions for the problem of users 
wishing to query a data lake without revealing to the database the content of their 
searches, and these searches being more complex than a traditional search – rather, they 
make use of machine learning techniques to do advanced data analytics such as seman-
tic analysis. 

In the course of this work, we viewed the problem through the lens of a real-world 
use case – whereby a user wishes to find out whether her patent idea or a semantically 
similar has already been claimed – but without revealing the idea to a server that may 
be interested in stealing the idea. In doing so, we built, optimized, and extended upon 
existing research to produce a software product to solve this problem. 

In doing so, we have: (1) Translated machine learning techniques for secure text 
mining based on known primitives for machine learning on encrypted data; (2) Imple-
mented these techniques and offer an application enabling users to confidentially vali-
date the uniqueness of their intellectual property against a patent database; (3) Repli-
cated the results of an important and elegant paper on machine learning over encrypted 
data, and provided performance benchmarks [1]; and (4) Extended and optimized upon 
the techniques suggested in prior works [1]. 

Together, these ideas have enabled us to demonstrate the validity, applicability, and 
performance of using the “secure building blocks” approach to constructing machine 
learning algorithms, and hope that this work will inspire future practical advances, in 
terms of both the range of building blocks and algorithms that can be constructed, as 
well as the use cases to which these constructions can be applied. 

7 Proposals for Future Work  

There exist many related directions for future work, each of which solve unique prob-
lems in machine learning over encrypted data. 

The first of these directions is to build more building blocks, enabling a more com-
plete set of machine learning techniques to be translated into version that make use of 
primitive functions that can be performed on encrypted data. This follows in the fine 
example set by [1], and would help to construct a vocabulary for future learning tasks 
to be expressed and performed securely. 

The second of these directions is to work on a generalizable method for combining 
the machine learning building blocks for encrypted data (i.e.: to enable hybridization 
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or chaining of machine learning algorithms, as is generally performed in machine learn-
ing to enhance performance of an algorithm for a dataset). This was mentioned in pass-
ing in the literature with reference to AdaBoost [1], but requires more thorough analysis 
and results for this field to meaningfully grow and offer a functionally equivalent set of 
tools for the performance of learning tasks. 

The third of these directions is to improve the semantic analysis of the patent data-
base by building secure ways to take confidential user input and construct or make use 
of semantic networks such as Wordnet [3] to perform an additional stage of machine 
learning that will broaden the query to the database to include keywords semantically 
related to – but not exactly the same as – those initially present in the user’s patent 
application. While this is primarily a machine learning problem, it is complexified at 
an algorithmic level by the requirements that: (1) the Wordnet server not learn the con-
tents of the initial user query or the words related to it, and (2) the Wordnet semantic 
network transmitted to the patent server must remain confidential to all parties except 
the user (client). 

The fourth of these tasks is a smaller one, unrelated to security but relevant to build-
ing a fully- functional system that replaces the more insecure way in which patent 
searches are presently performed. Specifically, this task involves building a mechanism 
for regularly (either via streaming or frequent batch-processing) updating the server’s 
patent records to reflect the complete USPTO database. 

The fifth of these tasks relates not to improving the translation of machine learning 
techniques to secure constructions, nor is it to do with solving engineering problems 
related to our specific use case – rather, it involves work to compare the techniques 
presented in this paper to other approaches that could be taken for secure text mining, 
including the more heavy-handed approaches making use of fully-homomorphic en-
cryption schemes. These comparisons should study such differences as those in perfor-
mance, ease of algorithm hybridization, and proposed and actual security models, and 
could serve as a valuable benchmark for future work in this area.  
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