
On speeding up factoring with quantum SAT solvers

Michele Mosca1, João Marcos Vensi Basso∗2, and Sebastian R. Verschoor3

1,3Institute for Quantum Computing, University of Waterloo, Canada
2Department of Physics and Astronomy, Tufts University, USA

1Department of Combinatorics & Optimization, University of Waterloo, Canada
1Perimeter Institute for Theoretical Physics, Waterloo, Canada

1evolutionQ Inc., Waterloo, Canada
3David R. Cheriton School of Computer Science, University of Waterloo, Canada

October 21, 2019

Abstract

There have been several efforts to apply quantum SAT solving methods to factor large integers.
While these methods may provide insight into quantum SAT solving, to date they have not led to a
convincing path to integer factorization that is competitive with the best known classical method,
the Number Field Sieve. Many of the techniques tried involved directly encoding multiplication
to SAT or an equivalent NP-hard problem and looking for satisfying assignments of the variables
representing the prime factors. The main challenge in these cases is that, to compete with the
Number Field Sieve, the quantum SAT solver would need to be superpolynomially faster than
classical SAT solvers. In this paper the use of SAT solvers is restricted to a smaller task related
to factoring: finding smooth numbers, which is an essential step of the Number Field Sieve.
We present a SAT circuit that can be given to quantum SAT solvers such as annealers in order
to perform this step of factoring. If quantum SAT solvers achieve any speedup over classical
brute-force search, then our factoring algorithm is faster than the classical NFS.

1 Introduction
Factoring integers by translating the problem directly into a satisfiability (SAT) instance or any
equivalent NP-hard problem does not appear to be efficient, even when quantum solvers are assumed
to be able to achieve a quadratic speedup [MV19]. More importantly, the strategy does not even appear
to perform better than the best known classical method: the Number Field Sieve (NFS) [BLP93].

A subroutine of the NFS is to search for y-smooth numbers of a particular form, where an integer
is y-smooth if all of its prime factors are ≤ y. Using Grover’s algorithm [Gro96] this search can be
done faster, so that a speedup over the classical method is achieved [BBM17]. Although the resulting
algorithm runs in super-polynomial time (and is thus slower than Shor’s algorithm [Sho94]), it requires
asymptotically fewer logical qubits to implement.

We investigate the strategy of replacing Grover’s search in the described low-resource algorithm
by translating the smooth detection process into a satisfiability instance to be evaluated by a SAT
solver. While the low-resource algorithm in [BBM17] requires a fault-tolerant quantum computer, one
can alternatively attempt to solve these SAT instances with any quantum SAT solving algorithm or

∗Corresponding author: Joao.Vensi_Basso@tufts.edu
Author list in alphabetical order; see https://www.ams.org/profession/leaders/culture/CultureStatement04.

pdf.

1

mailto:Joao.Vensi_Basso@tufts.edu
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

heuristic, such as a quantum annealer. If the quantum SAT solving heuristic achieves a speed-up
over classical SAT solving algorithms, then we show that this leads to a factoring algorithm that is
asymptotically faster than the regular NFS. While there is no convincing evidence to date that non-
fault-tolerant quantum SAT solvers will provide an asymptotic speed-up over classical SAT solvers,
with this approach we at least avoid the situation where the quantum SAT solver must outperform
classical SAT solvers by a superpolynomial factor in order to compete with the NFS.

We first demonstrate theoretically that some approaches to translating smoothness testing to a
SAT instance are too expensive. In practice, one might hope that SAT solvers would be able to pick
up on patterns of these specific circuits and to achieve potential speedups. Note that this does not
appear to happen in the direct factoring strategy [MV19], but there is the possibility that it would
for the more specific problem of smooth number detection. After implementing one of the circuits,
however, the benchmarks suggest that this is not the case.

We found one circuit implementing the Elliptic Curve Method (ECM) [Len87] which, if used as a
subroutine of the NFS, could result in a speedup for factoring integers since SAT solvers can use this
circuit to find smooth numbers asymptotically as fast as brute-force search. Moreover, if quantum
annealers or other SAT solvers achieve any speedup over such classical SAT solving, then our algorithm
is faster than the classical one. In the optimistic case that quantum SAT solvers achieve a full quadratic
speedup, then our algorithm has the same time complexity as the low-resource quantum algorithm
of [BBM17].

1.1 Contributions of this paper
We show in general that a few approaches for smoothness detection with SAT circuits are not enough
to speed up the NFS. Moreover, we run benchmarks and find that a classical SAT solver does not
appear to pick up on any patterns that allow one to claim otherwise for these approaches. Most
importantly, we present a circuit that, when used as a NFS subroutine, yields an algorithm with the
same asymptotic runtime as the classical NFS, and faster if quantum SAT solvers achieve any non-
trivial speedup. In the optimistic case that a quantum SAT solver achieves a full quadratic speedup,
the algorithm would be as fast as the low-resource quantum algorithm, while not necessarily requiring
a fault-tolerant quantum computer to operate.

1.2 Nomenclature
We refer to the algorithm in [BLP93] as the classical NFS, to the algorithm in [BBM17] as the low-
resource quantum NFS, and to our algorithm that uses ECM for smoothness detection as circuit-NFS.

1.3 Organization
In Section 2, we review previous work related to SAT solving as well as factoring, including a factoring
algorithm that encodes a multiplication circuit as a SAT instance whose solution represents the prime
factors. We also recall work done to speed up the Number Field Sieve using Grover’s search on a
quantum computer with (logN)2/3+o(1) logical qubits, where N is the number being factored. In
Section 3, we present a few encodings of smoothness detection into circuits. We show in general
that the SAT instances belonging to smoothness-detection circuits which have the prime exponents
or the factors of the number being tested for smoothness as variables cannot be solved fast enough
to speed up factoring. Most importantly, we present a circuit implementing the ECM, analyze it and
make statements about the solver runtime relative to the speedup obtained by a quantum SAT solver.
Lastly, in Section 4, we discuss the results of this paper as well as future work.

2

2 Previous Work
The work in [MV19] investigates the use of SAT solvers for factoring semi-primes, that is, numbers
with only two primes factors of similar size. It encodes a multiplication circuit into a SAT instance,
fixing the output as the number being factored and making the multiplicands variable. Therefore,
solving such SAT instance is equivalent to factoring the semi-prime. The paper finds no evidence
that this approach to factoring via classical SAT solvers provides any advantage, or even matches the
classical NFS. It also points out that quantum SAT solvers are not expected to do much better if
factoring is encoded as a SAT instance in this direct fashion.

The general number field sieve (NFS) improves on the special number field sieve [LLMP90] by
removing any restrictions on the numbers that can be factored. The NFS algorithm is conjectured to
factor any integer N in LN [1/3, (64/9)1/3 + o(1)] time, where Lx[a, b] = exp (b(log x)a(log log x)1−a)
and o(1) → 0 as N → ∞. Here we give a brief overview of the algorithm, highlighting the details
relevant to the present paper. Note that the NFS is explained and analyzed in thorough detail in
[BLP93]. For a simplified overview, see [BBM17, Section 2], whose notation we follow.

The algorithm takes in an integer N to be factored and parameters d, y, u, with

• y ∈ Lβ+o(1)

• u ∈ Lε+o(1)

• d ∈ (δ + o(1))(logN)1/3(log logN)−1/3

where N > 2d
2

, L = LN [1/3, 1] and β, δ, ε are parameters to be optimized for in the analysis. Further,
define

• m := bN1/dc

• U := {(a, b) ∈ Z2 : gcd{a, b} = 1, |a| ≤ u, 0 < b ≤ u}

• f(X) :=
∑d
i=0 ciX

i where the ci are obtained by writing N in base m: N =
∑d
i=0 cim

i

• α such that f(α) = 0

• g(a, b) := (−b)df(−a/b) =
∑d
i=0 cia

i(−b)d−i

• F (a, b) := (a+ bm)g(a, b)

• φ : Z
[
α
]
→ Z/NZ :

∑
i aiα

i →
∑
i aim

i, a homomorphism.

From the above, one can see that d represents the degree of the polynomial f and that u is, in a
sense, a bound on the search space U . Moreover, as explained below, y is taken to be the smoothness
bound on F (a, b). N is assumed to be odd.

The NFS attempts to find a suitable set S ⊆ U such that on the rational side∏
(a,b)∈S

(a+ bm) = X2 is a square in Z (1)

and on the algebraic side

f ′(α)2
∏

(a,b)∈S

(a+ bα) = β2 is a square in Z
[
α
]
. (2)

The algorithm then outputs
gcd{N,φ(β)− f ′(m)X}. (3)

In order to find an appropriate S, the algorithm looks for a T ⊆ U such that T = {(a, b) ∈ Z2 :
gcd{a, b} = 1, |a| ≤ u, 0 < b ≤ u, F (a, b) is y-smooth}, with #T ∈ y1+o(1). After T is found, a linear

3

dependence relation between the exponent vectors (reduced modulo 2) of F (a, b) for (a, b) ∈ T reveals
a suitable set S ⊆ T such that both Equation (1) and Equation (2) are satisfied.

The two main bottlenecks of NFS are to (i) find T and (ii) find the linear dependence relation.
In the classical NFS (i) takes L2ε+o(1) time, since that is the size of U , and (ii) takes L2β+o(1) with
Wiedemann’s algorithm [Wie86]. By balancing both, one obtains a total runtime of L1.923. The low-
resource algorithm does (i) using Grover’s search and yields a better runtime, namely L1.387. Note as
well that, if (ii) is assumed to take L2.5β+o(1) as in [Ber01], the classical NFS ends up with runtime
L1.976 and the low-resource algorithm with L1.456. For completeness we repeat the derivations in
Corollary 5 and Corollary 6.

3 Circuits for smoothness detection
The circuit SAT problem asks whether there exists an input for a given Boolean circuit, encoded as a
SAT instance, such that the output will be TRUE. For a satisfiable circuit SAT formula in v variables
one can easily find a solution with v queries to a decision oracle for SAT. In practice, the best known
algorithms for deciding SAT implicitly also provide a solution and thus the repeated applications of
a SAT decision algorithm are not necessary. Using binary encoding for integers we construct circuits
that encode a predicate on numbers, so that solving the corresponding SAT instance is a search for
numbers satisfying the predicate. From here on we refer to this process as “solving the circuit”.

Instead of using Grover’s search to look for (a, b) ∈ T as in [BBM17], we let a SAT solver find these
using the encoded circuit. In particular, we encode the predicate “F (a, b) is a y-smooth number” on
the input pair (a, b), while we assume the conditions |a| ≤ u and 0 < b ≤ u are enforced by the input
encoding. Similar to [BBM17], we assume that the case gcd{a, b} > 1 is handled by post-processing.

A naive algorithm for circuit SAT simply evaluates the full circuit for every possible input until a
one is found at the output. For a circuit with v input variables and size g this strategy has runtime
O(2vg), which is the runtime we assume for solving circuits. Given that circuit SAT is an NP-complete
problem, it is widely believed that no efficient algorithm exists. However, in practice modern SAT
solvers perform well on solving large SAT instances for certain problems, so that the conjectured
runtime requires some confirmation in the form of benchmark results.

In this section we analyze a few natural circuits for implementing the required predicate and prove
the approach does not offer any improvement over the classical NFS. We show that, in general, circuits
encoding all primes pi ≤ y or the prime exponents ei can not be solved efficient enough. On the other
hand, solving a circuit implementing the Elliptic Curve Method (ECM) [Len87] is shown to achieve
runtimes comparable to that of the classical NFS. We recall a few results important for the analysis.

Lemma 1. 1. |(a+ bm)| ≤ 2uN1/d and |g(a, b)| ≤ (d+ 1)N1/dud

2. log |F (a, b)| ∈ O((logN)2/3(log logN)1/3)

3. log log |F (a, b)| ∈ O(log logN)

Proof. 1. Follows directly from the definitions of g and m.

2. log |F (a, b)| ≤ log 2(d + 1) + 2 logN
d + (d + 1) log u ∈ O(logN

d + d log u). Now logN
d + d log u =

(εδ + δ−1 + o(1))(logN)2/3(log logN)1/3 ⊆ O((logN)2/3(log logN)1/3).

3. Taking logs of the expression above, the dominant term is log logN .
�

Lemma 2. If F (a, b) is y-smooth, then Ω(F (a, b)) ∈ O((logN)2/3(log logN)1/3), where Ω(n) is the
number of prime divisors of n with multiplicity.

Proof. All the prime factors of F (a, b) are at least 2, so that Ω(F (a, b)) ≥ log2 F (a, b). The result
follows from Lemma 1. �

4

3.1 Circuit with variable exponents
A natural idea is to hard-code all the primes pi ≤ y into the circuit (see Figure 1), and let a, b and
ei be the variables, where 1 ≤ i ≤ π(y), and π(x) counts the number of primes ≤ x. A satisfying
assignment finds the exponent ei for each prime pi that forms the factorization of F (a, b):

F (a, b) =

π(y)∏
i=1

peii (4)

b
a F (a, b) =

Π

pe11 pe22 p
eπ(y)

π(y)
...

e1 e2 eπ(y)

Figure 1: Circuit directly encoding Equation (4). Variables are shown in boldface. The Π gate outputs
the product of all input values.

The circuit provides no improvement over the classical NFS. Indeed, the number of bits necessary
to represent ~e = (e1, e2, ..., eπ(y)) is lower-bounded by π(y) ∈ y1+o(1), which implies that the time to
solve the circuit is at least exponential in Lβ+o(1), much larger than the overall NFS complexity. This
also proves the following.

Proposition 1. Any circuit that has ~e as variable input to be found by an exponential-time SAT
solver is not sufficient to speed up integer factorization.

Despite the theoretical result above, one might hope that SAT solvers are able to pick up on
specific patterns of this circuit and exploit them to improve the overall runtime. In order to investi-
gate this possibility, we encoded this circuit into a satisfiability instance and ran benchmarks using
MapleCOMSPS [LGPC16].

A circuit is generated for each number N , with all other parameters generated as described in
Section 2 and by setting o(1) = 0. In order to keep the circuit from growing too large, intermediate
values in the computation of

∏
peii are truncated to log2 F (u, u) bits and multiplication is computed by

schoolbook multiplication. Despite these techniques the SAT instances can grow large: on the tested
range they contain up to eighty thousand variables after simplification. This is partially explained
by the fact that F (both the bound F (u, u) and the found values F (a, b)) is much larger than N for
these small values of N . With the used parameters the desired F (u, u) < N will only occur for 140 bit
values of N and greater. All code for generating circuits (including tests for correctness), benchmarks
and measurements is made available online [VV19].

Figure 2 shows the benchmarking results. For each N ≤ 218 we measured the median time of
solving the same instance many times, for larger N we report the solver runtime directly. Each
measured runtime is multiplied by y(N).

Since there are many (a, b) that satisfy the predicate, we could run the solver many times to find
multiple (a, b) ∈ T . Closer inspection of our results indicate that the SAT solver does indeed find
many valid pairs. If collisions are a problem, we could arbitrarily partition the search space by putting
restrictions on the input and have multiple solvers work in parallel. Alternatively we could encode
the negation of found solutions as a new SAT clause. Determining which approach is best is left as

5

an open question, but here we assume that finding y(N) solutions takes y(N) times the resources as
finding one solution.

Given the asymptotic behaviour displayed in Figure 2 it appears that the conjectured runtime
O(2y) accurately describes the actual runtime of the SAT solver for finding smooth numbers using
the variable exponents circuit. Although this is not a statement about quantum SAT solvers, it is
one more argument supporting the lack of speedup attributable to the SAT solver learning specific
structures of this problem.

27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

N

100

102

104

106

108

1010

1012

so
lv

er
 ru

nt
im

e
(s

)

2y

L1.387

L1.923

y(N) * time to solve one instance

Figure 2: Scaling of solving times for the variable exponent circuit

3.2 Circuit with variable factors
Exploiting the small number of prime factors of F (a, b) following from Lemma 2, one can hope to turn
the factors into variables (see Figure 3). At the end, the factors qi must multiply to F (a, b). Note
that the qi need not be prime, but only ≤ y. This restriction could be enforced at no cost by allowing
at most dlog2 ye bits to encode each qi or by an efficient test on each input.

b
a F (a, b) =

Π

...q1 q2 qn

Figure 3: Circuit with variable factors. Variables are shown in boldface. The Π gate outputs the
multiplication of all input values.

However, this strategy is too costly. That is, the number of variables in the circuit is 2 log u +∑
i log qi > log

∏
i qi. In the very best case that the qi are encoded with the exact number of necessary

bits, which is logF (a, b), then by Lemma 1, results in LN [2/3, ·] time to solve the circuit. This also
implies the following.

6

Proposition 2. If
∏
i qi = F (a, b), any circuit that has the qi as variables to be found by an

exponential-time SAT solver is not sufficient to speed up integer factorization.

3.3 ECM circuit
The Elliptic Curve Method (ECM) is a factoring algorithm devised by Hendrik Lenstra [Len87]. One
of its key features is that its runtime is conjectured to depend on the smallest prime factor of the
number being factored, making it very suitable for smoothness detection. We create a circuit that
executes repeated runs of the ECM to obtain prime factors pi ≤ y of F (a, b). For each prime obtained,
repeated divisions are performed in order to eliminate that prime from the factorization. Figure 4
shows a simplified circuit. There are implicit operations such as checking if the obtained prime is
≤ y and only performing division when the remainder is zero. RAND represents a random choice of
parameters for the ECM, more specifically a, x, y, using the notation in [Len87, (2.5)]. Note that, for
a given SAT instance, the random generator seeds are fixed.

This circuit meets the desirable time complexity by decreasing the number of variables significantly.
Indeed, the only variables are a, b, so the search space is just U . The following theorem establishes
the size and probability of success of the ECM circuit.

b
a F (a, b) / ... /

ECM

RAND

/ ... /

ECM

RAND

... = 1?

Figure 4: Circuit implementing the Elliptic Curve Method (ECM). Variables are shown in boldface.
RAND stands for a source of randomness for the parameters of the ECM.

Theorem 3. The ECM circuit can be designed to have size upper-bounded by LN [1/6,
√

2β/3 + o(1)]
and probability of success 1− o(1).

Proof. From [Len87, (2.10)], one run of the ECM, with appropriate choice of parameters, finds with
probability at least 1 − e−1 a non-trivial divisor of n in time K(p)M(n), where p is the least prime
divisor of n, K(p) ∈ Lp[1/2,

√
2 + o(1)] and M(n) ∈ O((log n)1+o(1)). It is uncertain that the found

non-trivial divisor is the smallest prime dividing n, but in practical circumstances this will often be
the case [Len87, (2.10)]. For our purposes the divisors are allowed to be any factor of F (a, b), as long
as it is ≤ y.

By Lemma 2, one can choose a constant c so that Ω(F (a, b)) ≤ c(logN)2/3(log logN)1/3. How-
ever, we increase c → c + ∆, ∆ > 0, to allow for ECM runs to fail. If there are B := (c +
∆)(logN)2/3(log logN)1/3 ECM blocks, the probability of success is the probability of at least Ω(N)
events out of B succeeding. This can be seen as a binomial process with probability of success p = 1− 1

e .
In the limit N →∞ =⇒ B →∞, Binomial(x;B, p)→ Normal(x;Bp,Bp(1− p)). We seek

Pr(x ≥ Ω(N)) =
1√

2πBp(1− p)

∫ ∞
Ω(N)

exp

[
− (x−Bp)2

2Bp(1− p)

]
dx

=
1

2

[
1− erf

(
(logN)2/3(log logN)1/3)(c− pc− p∆)√
2(c+ ∆)(logN)2/3(log logN)1/3)p(1− p)

)]
(5)

7

Note that if we let ∆ ∈ O(1), that is, ∂∆
∂N = 0, the circuit would not work, since limN→∞ Pr(x ≥

Ω(N)) = 0. However, if we let ∆ = ∆(N) such that limN→∞∆(N) = ∞, then limN→∞ Pr(x ≥
Ω(N)) = 1, as desired. Hence choosing ∆ ∈ Θ(log logN) suffices and does not alter the final com-
plexity.

Hence let the circuit repeat the ECM step O((logN)2/3(log logN)4/3) times and perform at
most O((logN)2/3(log logN)1/3) divisions of an obtained prime, since this is the maximum power
a prime factor can have in the factorization of F (a, b), by Lemma 1. Each ECM has a differ-
ent run-time since the least prime p changes and n is subsequently divided by the discovered fac-
tors. For upper-bound estimations, however, one can fix p = y and n = N . In order to es-
timate the size of the ECM block, one can multiply the time and space complexity. The for-
mer is K(y)M(N) and the latter is estimated to be O(logN). This yields a total circuit size of
O((logN)2/3(log logN)1/3)O((logN)2/3(log logN)4/3)K(y)M(N)O(logN) ⊆ LN [1/6,

√
2β/3+o(1)].

�

In order to analyze the runtime of solving the ECM circuit to find smooth F (a, b), we need the
following.

Definition 1. If a search space E has size #E, an algorithm that is able to search through E within
time O(#E1/γ) is said to achieve a γ-speedup.

For instance, Grover’s search achieves a 2-speedup. The following establishes a generalization of
the runtime analysis of NFS given in [BBM17].

Theorem 4. If an algorithm A achieves a γ-speedup, for γ > 0, and the linear algebra step in the

NFS is assumed to take L2β+o(1), the NFS can use A to run in time L
3
√

32(γ+1)

9γ2
+o(1).

Proof. By Lemma 1, |F (a, b)| ≤ 2(d + 1)N2/dud+1. As shown in [BBM17, section 3], a uniform
random integer in

[
1, 2(d + 1)N2/dud+1

]
has a smoothness probability of L−(2/δ+δε+o(1))/(3β). We

use the same heuristic and assume that this is also the smoothness probability of F (a, b). Since
there need to be Lβ+o(1) smooth F (a, b) in the search space U of size #U ∈ L2ε+o(1), we must have
2ε ≥ β + (2/δ + δε)/(3β). Since the constants are positive, ε

(
2− δ

3β

)
≥ β + 2

3βδ and 6β/δ > 1. With
this relation, the smoothness probability becomes Lβ−2ε+o(1).

Now, as in [BBM17], we partition U in any systematic fashion into Lβ+o(1) parts of size L2ε−β+o(1),
each containing Lo(1) smooth F (a, b) with very high probability. Algorithm A can search each part in
L(2ε−β)/γ+o(1) time, for a total time of L2ε/γ+β(1−1/γ)+o(1).

When balancing against the linear algebra step of L2β+o(1) time, we obtain ε = β
(
γ+1

2

)
. Hence

β =
(γ+1)δ+

√
δ2+96γ/((γ+1)2δ)

12γ , since (γ+1)δ−
√
δ2+96γ/((γ+1)2δ)

12γ is negative. By minimizing this as a

function of δ, we obtain a minimum of β = 3

√(
2

3γ

)2
(γ + 1) given by δ = 3

√
12γ

(γ+1)2 . Note that

6β/δ = 2(1 + 1
γ) > 1. This yields a final NFS runtime of L

3
√

32(γ+1)

9γ2
+o(1). �

The following two corollaries are restatements of the results in [BBM17].

Corollary 5 ([BBM17]). The classical NFS runs in L
3
√

64/9+o(1) time, where 3
√

64/9 ≈ 1.923.

Proof. Set γ = 1 in Theorem 4. �

Corollary 6 ([BBM17]). The low-resource quantum algorithm runs in L
3
√

8/3+o(1) time, where 3
√

8/3 ≈
1.387.

Proof. Set γ = 2 in Theorem 4. �

8

Figure 5: Exponent α of the final NFS runtime Lα+o(1) with the use of a SAT solver with γ-speedup.
The relation between α and γ is given in Theorem 4.

The final runtime of circuit-NFS depends on the runtime of the SAT solver used. Figure 5 shows
the exponent α in the final runtime Lα+o(1) of circuit-NFS achieved if the SAT solver used achieves a
γ-speedup, that is, solves a circuit with v variables in 2v/γ+o(1) time.

The following results portray the two extreme scenarios highlighted in Figure 5: a classical solver
with 2v+o(1) runtime versus an ideal quantum SAT solver that achieves a 2v/2+o(1) runtime. The
naive circuit SAT algorithm applied to the ECM circuit achieves runtime O(22 log2 uLN [1/6, ·]) =

L
3
√

64/9+o(1), corresponding to γ = 1. Note that we do not expect γ > 2 since γ = 2 has been proved
optimal for a quantum computer [BBBV97].

Theorem 7. With a classical SAT solver, one can factor an integer N in L
3
√

64/9+o(1) time, where
3
√

64/9 ≈ 1.923.

Theorem 8. If a quantum SAT solver is assumed to achieve a full 2-speedup, it can be used to factor
an integer N in L

3
√

8/3+o(1) time, where 3
√

8/3 ≈ 1.387.

Theorem 7 is not an improvement on the classical NFS, but it shows that the circuit-NFS approach
is asymptotically at least as good. Under the assumption that quantum annealears can achieve the
aforementioned 2-speedup in solving SAT circuits, one can obtain the same asymptotic runtime as the
low-resource quantum algorithm. However, this does not require a fault-tolerant quantum computer
capable of running Grover’s algorithm.

It is harder to make a statement about the qubit requirement of circuit-NFS. Instead of SAT, one
can reduce to other NP-hard problems like QUBO for more direct application of DWave’s quantum
annealer. If the smoothness detection circuit could be simplified and written as an instance of QUBO
in terms of the variables a, b only, that would total 2 log u ∈ (logN)1/3+o(1) qubits. However, simpli-
fication is not trivial and does not seem to come without overhead, given our preliminary tests. It is
more likely that intermediate wires of the circuit would also have to be QUBO variables, increasing
the qubit requirement up to the full circuit size LN [1/6,

√
2β/3 + o(1)]. Therefore it remains an open

9

question how many annealing qubits circuit-NFS requires. On the other hand, annealing qubits are
currently produced in much higher quantity than other types of qubits, suggesting the possibility that
circuit-NFS could be implemented sooner than the low-resource quantum NFS.

4 Conclusion
A potential speedup to integer factorization comes from replacing the search for smooth numbers in
the NFS by finding those numbers using a SAT solver. This requires solving a circuit that detects if
F (a, b) is smooth upon input a and b. Two natural circuits for that task are the circuit with variable
exponents of Figure 1 which explicitly lists all primes that can be factors and the circuit with variable
factors of Figure 3 which relaxes the requirement that these factors are prime. Both have too many
input wires for any exponential-time SAT solver to provide any asymptotic speedup over brute-force
search.

Despite the exponential upper bound on the runtime of SAT solvers, practical solvers are known to
perform well on certain problems by picking up on patterns in the problem instances. One could hope
that a speedup over the theoretical upper bound is therefore achieved in practice on these particular
circuits, although this speedup would have to be superpolynomial in order to result in more efficient
integer factorization. Benchmarks on the variable exponents circuit suggest that no such speedup is
realized in practice.

The circuit-NFS algorithm is specialized to the smoothness detection problem in the sense that the
ECM performs well for finding small factors. Our algorithm has the same asymptotic runtime as the
classical NFS. Measurements of solving smoothness detection circuits however indicate that there is
a massive overhead to this approach. Any speedup in SAT solving (be it quantum or classical) needs
to make up for this overhead before resulting in a speedup for factoring. Still, if the overhead is only
constant then any γ-speedup will eventually be sufficient. Given a quantum annealer that solves SAT
instances with any speedup over classical search, circuit-NFS performs asymptotically better than
the classical NFS. If a full quadratic speedup is attained, circuit-NFS achieves the asymptotic time
complexity of the low-resource quantum NFS, while perhaps not requiring a fault-tolerant quantum
computer (depending on the quantum SAT solving device).

Open problems remain, such as benchmarking circuit-NFS on the ECM circuit and estimating its
quantum resource requirements.

References
[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. “Strengths

and weaknesses of quantum computing”. In: SIAM journal on Computing 26.5 (1997),
pp. 1510–1523. doi: 10.1137/S0097539796300933.

[BBM17] Daniel J. Bernstein, Jean-François Biasse, and Michele Mosca. “A Low-Resource Quantum
Factoring Algorithm”. In: Post-Quantum Cryptography. Ed. by Tanja Lange and Tsuyoshi
Takagi. Cham: Springer International Publishing, 2017, pp. 330–346. isbn: 978-3-319-
59879-6. doi: 10.1007/978-3-319-59879-6_19.

[Ber01] Daniel J. Bernstein. Circuits for integer factorization: a proposal. 2001. url: https:
//cr.yp.to/papers/nfscircuit.pdf.

[BLP93] Joe P. Buhler, Hendrik W. Lenstra, and Carl Pomerance. “Factoring integers with the
number field sieve”. In: The development of the number field sieve. Springer, 1993, pp. 50–
94. doi: 10.1007/BFb0091539.

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In: Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing. Ed. by Gary
L. Miller. ACM, 1996, pp. 212–219. doi: 10.1145/237814.237866.

10

https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1007/978-3-319-59879-6_19
https://cr.yp.to/papers/nfscircuit.pdf
https://cr.yp.to/papers/nfscircuit.pdf
https://doi.org/10.1007/BFb0091539
https://doi.org/10.1145/237814.237866

[Len87] H. W. Lenstra. “Factoring Integers with Elliptic Curves”. In: Annals of Mathematics 126.3
(1987), pp. 649–673. issn: 0003486X. doi: 10.2307/1971363.

[LGPC16] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. “Learning Rate
Based Branching Heuristic for SAT Solvers”. In: Theory and Applications of Satisfiability
Testing – SAT 2016: 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings. Ed. by Nadia Creignou and Daniel Le Berre. Cham: Springer International
Publishing, 2016, pp. 123–140. isbn: 978-3-319-40970-2. doi: 10.1007/978- 3- 319-
40970-2_9.

[LLMP90] Arjen K. Lenstra, Hendrik W. Lenstra Jr, Mark S. Manasse, and John M. Pollard. “The
number field sieve”. In: Proceedings of the twenty-second annual ACM symposium on
Theory of computing. ACM. 1990, pp. 564–572. doi: 10.1145/100216.100295.

[MV19] Michele Mosca and Sebastian R. Verschoor. “Factoring semi-primes with (quantum) SAT-
solvers”. In: CoRR abs/1902.01448 (2019). arXiv: 1902.01448.

[Sho94] Peter W. Shor. “Polynominal time algorithms for discrete logarithms and factoring on
a quantum computer”. In: ANTS. Vol. 877. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1994, p. 289. doi: 10.1007/3-540-58691-1_68.

[VV19] João Marcos Vensi Basso and Sebastian R. Verschoor. NFS-SAT (GitHub repository).
Oct. 2019. url: https://github.com/sebastianv89/NFS-SAT.

[Wie86] Douglas Wiedemann. “Solving sparse linear equations over finite fields”. In: IEEE trans-
actions on information theory 32.1 (1986), pp. 54–62. doi: 10.1109/TIT.1986.1057137.

11

https://doi.org/10.2307/1971363
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1145/100216.100295
http://arxiv.org/abs/1902.01448
https://doi.org/10.1007/3-540-58691-1_68
https://github.com/sebastianv89/NFS-SAT
https://doi.org/10.1109/TIT.1986.1057137

	Introduction
	Contributions of this paper
	Nomenclature
	Organization

	Previous Work
	Circuits for smoothness detection
	Circuit with variable exponents
	Circuit with variable factors
	ECM circuit

	Conclusion

